
[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 1

MODULE 3: Hardware Software Co design and Program Modelling: Fundamental issues in

Hardware Software Co-design, Computational models in Embedded System Design.

Embedded Hardware Design and Development: Analog Electronic Components, Digital

Electronic Components, VLSI & Integrated Circuit Design, Electronic Design Automation

Tools.

HARDWARE SOFTWARE CO-DESIGN AND PROGRAM MODELING

Hardware Software Co-Design

In the traditional embedded system development approach, the hardware software

partitioning is done at an early stage and engineers from the software group take care of

the software architecture development and implementation, whereas engineers from the

hardware group are responsible for building the hardware required for the product. There is

less interaction between the two teams and the development happens either serially or in

parallel. Once the hardware and software are ready, the integration is performed.

Fundamental Issues in Hardware Software Co-Design

The fundamental issues in hardware software co-design are:

1. Selecting the Model

2. Selecting the Architecture

3. Selecting the Language

4. Partitioning System Requirements into Hardware and Software

Selecting the Model: In hardware software co-design, models are used for capturing and

describing the system characteristics. A model is a formal system consisting of objects and

composition rules. It is hard to make a decision on which model should be followed in a

particular system design. Most often designers switch between varieties of models from the

requirements specification to the implementation aspect of the system design.

For example, at the specification stage, only the functionality of the system is in focus

and not the implementation information. When the design moves to the implementation

aspect, the information about the system component is revealed and the designer has to

switch to a model capable of capturing the system's structure.

Selecting the Architecture: A model only captures the system characteristics and does

not provide information on 'how the system can be manufactured?’. The architecture

specifies how a system is going to implement in terms of the number and types of different

components and the interconnection among them. Commonly used architectures are:

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 2

 Controller architecture: Implements the finite state machine model (FSM) using a state

register and two combinational circuits.

 Datapath architecture: Best suited for implementing the data flow graph model where

the output is generated as a result of a set of predefined computations on input data.

 Complex Instruction Set Computing (CISC) architecture: Uses an instruction set

representing complex operations and can perform a large complex operation with a

single instruction.

 Reduced Instruction Set Computing (RISC) architecture: Reuses instruction set

representing simple operations and it requires the execution of multiple RISC

instructions to perform a complex operation.

 Very Long Instruction Word Computing (VLIW) architecture: Implements multiple

functional units (ALUs, multipliers, etc.) in the datapath.

 Single Instruction Multiple Data (SIMD) architecture: A single instruction is executed in

parallel with the help of the Processing Element. The SIMD architecture forms the basis

of reconfigurable processor.

 Multiple Instruction Multiple Data (MIMD) architecture: Executes different instructions

at a given point of time. The MIMD architecture forms the basis of multiprocessor

systems.

Selecting the Language: A programming language captures a 'Computational Model' and

maps it into architecture. There is no hard and fast rule to specify which language should

be used for capturing this model. A model can be captured using multiple programming

languages like C, C++, C#, Java, etc. for software implementations and languages like

VHDL, System C, Verilog, etc. for hardware implementations. On the other hand, a single

language can be used for capturing a variety of models.

Certain languages are good in capturing certain computational model. For example,

C++ is a good candidate for capturing an object oriented model. The only pre-requisite in

selecting a programming language for capturing a model is that the language should

capture the model easily.

Partitioning System Requirements into Hardware and Software: It may be possible to

implement the system requirements in either hardware or software (firmware). It is a tough

decision making task to figure out which one to opt. Various hardware software trade-offs

are used for making a decision on the hardware-software partitioning.

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 3

Computational Models in Embedded Design

The commonly used computational models in embedded system design are:

1. Data Flow Graph Model

2. Control Data Flow Graph Model

3. State Machine Model

4. Sequential Program Model

5. Concurrent/Communicating Process Model

6. Object-Oriented Model

Data Flow Graph Model

DFG model translates data processing requirements into data flow graph. It is a data driven

model in which the program execution is determined by data. This model emphasizes on

the data and operations on the data which transforms the input data to output data.

Embedded applications which are computational intensive and data driven are modelled

using the DFG model. DSP applications are typical examples for it.

DFG is a visual model in which the operation on the data (process) is represented

using a block (circle) & data flow is represented using arrows. Inward arrow to the process

(circle) represents input data & an outward arrow from the process (circle) represents

output data in DFG notation.

Suppose one of the functions in an

application contains the computational

requirement x = a + b; and y = x – c. Figure

illustrates the implementation.

A DFG model is said to be acyclic

DFG (ADFG) if it doesn't contain multiple

values for the input variable and multiple

output values for a given set of input(s).

Feedback inputs (Output is fed back to

Input), events, etc. are examples for non-

acyclic inputs. A DFG model translates the

program as a single sequential process

execution.

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 4

Control Data Flow Graph/Diagram (CDFG) Model

The DFG model is a data driven model in which the execution is controlled by data and it

doesn't involve any control operations (conditionals). The Control DFG (CDFG) model is

used for modelling applications involving conditional program execution. CDFG models

contains both data operations and control operations. The CDFG uses Data Flow Graph

(DFG) as element and conditional (constructs) as decision makers. CDFG contains both

data flow nodes and decision nodes, whereas DFG contains only data flow nodes.

Consider the implementation of the

CDFG for following requirement: 𝐼𝑓 𝑓𝑙𝑎𝑔 =

1, 𝑥 = 𝑎 + 𝑏; 𝑒𝑙𝑠𝑒 𝑦 = 𝑎 − 𝑏; The CDFG

model for the same is given in the figure.

The control node is represented by a

'Diamond' block which is the decision

making element in a normal flow chart

based design. Decision on which process

is to be executed is determined by control

node.

Real world example for modelling

the embedded application using CDFG is

capturing & saving of the image to a

format set by the user in a digital camera.

The decision on, in which format the

image is stored (formats like JPEG, TIFF,

BMP, etc.) is controlled by the camera

settings, configured by the user.

State Machine Model

The State Machine model is used for modelling reactive or event-driven embedded systems

whose processing behaviour is dependent on state transitions. Embedded systems used in

the control and industrial applications are typical examples for event driven systems.

The State Machine model describes the system behaviour with 'States', 'Events',

'Actions' and 'Transitions’.

 State is a representation of a current situation.

 An event is an input to the state. The event acts as stimuli for state transition.

 Transition is the movement from one state to another.

 Action is an activity to be performed by the state machine.

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 5

Finite State Machine (FSM): A FSM model is one in which the number of states are finite.

In other words the system is described using a finite number of possible states. For

example, consider the design of an embedded system for driver/ passenger 'Seat Belt

Warning' in an automotive using the FSM model. The system requirements are captured as:

 When the vehicle ignition is turned on and the seat belt is not fastened within 10

seconds of ignition ON, the system generates an alarm signal for 5 seconds.

 The Alarm is turned off when the alarm time (5 seconds) expires or if the driver/

passenger fasten the belt or if the ignition switch is turned off, whichever happens first.

 Here the states are 'Alarm Off', 'Waiting' and 'Alarm On' and the events are 'Ignition Key

ON', 'Ignition Key OFF', 'Timer Expire', 'Alarm Time Expire' and 'Seat Belt ON'.

 Using the FSM, the system requirements can be modelled as given in following Figure.

 The wait state is implemented using a timer. The timer also has certain set of states

and events for state transitions. Using the FSM model, the timer can be modelled as shown

in the below figure.

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 6

Problem 1: Design an automatic tea/ coffee vending machine based on FSM model for the

following requirement:

 The tea/coffee vending is initiated by user inserting a 5 rupee coin.

 After inserting the coin, the user can either select 'Coffee' or 'Tea' or press 'Cancel' to

cancel the order and take back the coin.

Solution: The FSM representation contains four states namely; 'Wait for coin' 'Wait for User

Input', 'Dispense Tea' and 'Dispense Coffee'. The FSM representation for the above

requirement is given in the below figure.

Problem 2: Design a coin operated public telephone unit based on FSM model for the

following requirements.

 The calling process is initiated by lifting the receiver (off-hook) of the telephone unit.

 After lifting the phone the user needs to insert a 1 rupee coin to make the call.

 If the line is busy, the coin is returned on placing the receiver back on the hook (on-

hook).

 If the line is through, the user is allowed to talk till 60 seconds and at the end of 45th

second, prompt for inserting another 1 rupee coin for continuing the call is initiated.

 If the user doesn't insert another 1 rupee coin, the call is terminated on completing the

60 seconds time slot.

 The system is ready to accept new call request when the receiver is placed back on the

hook (on-hook).

 The system goes to the 'Out of Order' state when there is a line fault.

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 7

Solution: The FSM representation for the above requirement is given in the below figure.

Sequential Program Model

In the Sequential Program Model, the functions or processing requirements are executed in

sequence. It is same as the conventional procedural programming. Here the program

instructions are iterated and executed conditionally and the data gets transformed through

a series of operations. Finite State Machines (FSMs) and Flow Charts are used for modelling

sequential program. The FSM approach represents the states, events, transitions and

actions, whereas the Flow Chart models the execution flow.

The execution of functions in a sequential program model for the 'Seat Belt Warning'

system is illustrated below and the Sequential Program Model (flowchart) for the same is

also given in below figure:

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 8

Concurrent/ Communicating Process Model

The concurrent or communicating process model models concurrently executing tasks/

processes. It is easier to implement certain requirements in concurrent processing model

than the conventional sequential execution. Sequential execution leads to a single

sequential execution of task and thereby leads to poor processor utilization, when the task

involves I/O waiting, sleeping for specified duration etc. If the task is split into multiple

subtasks, it is possible to tackle the CPU usage effectively, when the subtask under

execution goes to a wait or sleep mode, by switching the task execution. However,

concurrent processing model requires additional overheads in task scheduling, task

synchronization and communication.

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 9

For example, consider the implementation of the 'Seat Belt Warning' system in

concurrent processing model. We can split the tasks into:

1. Timer task for waiting 10 seconds (wait timer task)

2. Task for checking the ignition key status (ignition key status monitoring task)

3. Task for checking the seat belt status (seat belt status monitoring task)

4. Task for starting and stopping the alarm (alarm control task)

5. Alarm timer task for waiting 5 seconds (alarm timer task)

The tasks cannot be executed them randomly or sequentially. We need to synchronize

their execution through some mechanism One way of implementing a concurrent model for

the 'Seat Belt Warning' system is illustrated in the below figure:

Object-Oriented Model

The object-oriented model is an object based model for modelling system requirements. It

disseminates a complex software requirement into simple well defined pieces called objects.

Object-oriented model brings re-usability, maintainability and productivity in system

design. In the object-oriented modelling, object is an entity used for representing or

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 10

modelling a particular piece of the system. Each object is characterized by a set of unique

behaviour and state.

A class is an abstract description of a set of objects and it can be considered as a

'blueprint' of an object. A class represents the state of an object through member variables

and object behaviour through member functions. The member variables and member

functions of a class can be private, public or protected. Private member variables and

functions are accessible only within the class, whereas public variables and functions are

accessible within the class as well as outside the class. The protected variables and

functions are protected from external access.

