
[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 1

MODULE 4: Embedded Firmware Design and Development: Embedded Firmware

Design Approaches, Embedded Firmware Development Languages

Embedded System Development Environments: Types of files generated on cross

compilation, disassemble/ decompliler, Simulators, Emulators and Debugging

EMBEDDED FIRMWARE DESIGN AND DEVELOPMENT

The embedded firmware is responsible for controlling the various peripherals of the

embedded hardware and generating response in accordance with the functional

requirements. Firmware is considered as the master brain of the embedded system. For

most of the embedded products, the firmware is stored at a permanent memory (ROM) and

they are non-alterable by end users.

Embedded firmware development process starts with conversion of the firmware

requirements into a program model using modelling tools. Once the program model is

created, the next step is the implementation of the tasks and actions by capturing the

model using a language which is understandable by the target processor/controller.

The firmware design approaches for embedded product is purely dependent on the

complexity of the functions to be performed, the speed of operation required, etc. Two basic

approaches are used for embedded firmware design are:

 Super Loop Based Approach (Conventional Procedural Based Design)

 Embedded Operating System (OS) Based Approach

Super Loop Based Approach

This approach is adopted for applications that are not time critical & where the response

time is not so important. This approach is similar to a conventional procedural

programming where the code is executed task by task. The task listed at the top of the

program code is executed first and the tasks just below the top are executed after

completing the first task.

In a multiple task based system, each task is executed in serial in this approach. The

firmware execution flow for this will be:

1. Configure the common parameters and perform initialization for various hardware

components memory, registers, etc.

2. Start the first task and execute it

3. Execute the second task

4. Execute the next task

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 2

5. :

6. :

7. Execute the last defined task

8. Jump back to the first task and follow the same flow

The order in which the tasks to be

executed are fixed & they are hard coded

in the code itself. Also the operation is an

infinite loop based approach. We can

visualize the operational sequence listed

above in terms of a ‘C’ program code as

shown:

Almost all tasks in embedded applications are non-ending and are repeated infinitely

throughout the operation. This repetition is achieved by using an infinite loop. Hence this

approach is called as 'Super loop based approach’. The only way to come out of the loop is

either a hardware reset or an interrupt assertion.

Advantage of Super Loop Based Approach:

 It doesn't require an operating system.

 There is no need for scheduling which task is to be executed and assigning priority to

each task.

 The priorities are fixed and the order in which the tasks to be executed are also fixed.

 The code for performing these tasks will be residing in the code memory without an

operating system image.

Applications & Examples of Super Loop Based Approach:

This type of design is deployed in low-cost embedded products and products where

response time is not time critical. Some embedded products demands this type of approach

if some tasks itself are sequential. For example, reading/writing data to and from a card

using a card reader requires a sequence of operations

A typical example of a 'Super loop based’ product is an electronic video game toy

containing keypad and display unit.

Drawbacks of Super Loop Based Approach:

 Any failure in any part of a single task will affect the total system: If the program

hangs up at some point while executing a task, it will remain there forever and

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 3

ultimately the product stops functioning. Watch Dog Timers (WDTs) can be used to

overcome this.

 Lack of real timeliness: If the number of tasks to be executed within an application

increases, the time at which each task is repeated also increases. This brings the

probability of missing out some events.

Embedded Operating System (OS) Based Approach

The operating system based approach contains operating systems, which can be either a

General Purpose Operating System (GPOS) or a Real Time Operating System (RTOS) to host

the user written application firmware.

The GPOS based design is similar to a conventional PC based application

development where the device contains an operating system and you will be creating and

running user applications on top of it. Example of a GPOS is Microsoft Windows XP

Embedded. Examples of Embedded products using Microsoft Windows XP OS are Personal

Digital Assistants (PDAs), Hand held devices/Portable devices. OS based applications also

require 'Driver software' for different hardware present on the board to communicate with

them.

Real Time Operating System (RTOS) based design approach is employed in embedded

products demanding Real-time response. RTOS responds in a timely and predictable

manner to events. RTOS contains a Real Time kernel responsible for performing pre-

emptive multitasking, scheduler for scheduling tasks, multiple threads, etc. A RTOS allows

flexible scheduling of system resources like the CPU and memory and offers some way to

communicate between tasks. 'Windows CE', 'pSOS', 'ThreadX', 'MicroC/OS-II’, 'Embedded

Linux', 'Symbian’, etc. are examples of RTOS employed in embedded product development.

Mobile phones, handheld devices, etc. are examples of 'Embedded Products' based on

RTOS.

Embedded Firmware Development Languages

For embedded firmware development, we can use either:

 a target processor/controller specific language (Generally known as Assembly

language or low level language) or

 a target processor/controller independent language (Like C, C++, JAVA, etc.

commonly known as High Level Language) or

 a combination of Assembly and High level Language.

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 4

Assembly Language Based Development

Assembly language is human readable notation of 'machine language’, whereas ‘Machine

Language' is a processor understandable language. Machine Language is a binary

representation and it consists of 1s and 0s. Machine Language is made readable by using

specific symbols called ’mnemonics’. Machine Language can be considered as interface

between processor & programmer.

Assembly language and Machine Languages are processor/controller dependent and

an assembly program written for one processor/controller family will not work with others.

Assembly language programming is the task of writing processor specific machine code in

mnemonic form, converting the mnemonics into actual processor instructions (Machine

Language) and data using an assembler.

The general format of an assembly language instruction is an Opcode followed by

Operands. The Opcode tells the processor/ controller what to do and the Operands provide

the data and information required to perform the action specified by the opcode.

Example: MOV A, #30 // Here MOV A is the Opcode and 30 is the operand.

Assembly language instructions are written one per line. Each line of an assembly

language program is split into four fields as given below:

LABEL OPCODE OPERANDS COMMENT

LABEL is an optional field. A 'LABEL' is an identifier used extensively in programs to reduce

the reliance on programmers or remembering where data or code is located.

The sample code given below using 8051 Assembly language illustrates the

structured assembly language programming.

DELAY: MOV R0, #255 ; Load Register R0 with 255.

 DJNE R0, DELAY ; Decrement R0 and loop till R0 = 0.

 RET ; Return to calling program.

The Assembly program contains a main routine and it may or may not contain

subroutines. The example given above is a subroutine, which can be invoked by a main

program by the assembly instruction: LCALL DELAY. Executing this instruction transfers

the program flow to the memory address referenced by the 'LCALL DELAY'.

The Assembly language program written in assembly code is saved as .asm (Assembly

file) file or an .src (source) file. Any text editor like 'notepad' or 'WordPad' or the text editor

of an Integrated Development (IDE) tool can be used for writing the assembly instructions.

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 5

When a program is too complex or too big; the entire code can be divided into sub-

modules and each module can be re-usable. This concept is called as Modular

Programming. Modular programs are usually easy to code, debug and alter.

Source File to Object File Translation

Translation of assembly code to machine code is performed by assembler. The assemblers

for different target machines are different. A51 Macro Assembler from Keil software is a

popular assembler for the 8051 family microcontroller. Various steps involved in the

conversion of a program written in assembly language to corresponding binary file/machine

language are shown below:

Each source module is written in Assembly and is stored as .src file or .asm file. Each

file can be assembled separately to examine the syntax errors and incorrect assembly

instructions. On successful assembling of each .src/.asm file a corresponding object file is

created with extension '.obj’. The object file does not contain the absolute address of where

the generated code needs to be placed on the program memory and hence it is called a re-

locatable segment. It can be placed at any code memory location and it is the

responsibility of the linker/locater to assign absolute address for this module.

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 6

Library File Creation and Usage: Libraries are specially formatted, ordered program

collections of object modules that may be used by the linker at a later time. When the

linker processes a library, only those object modules in the library that are necessary to

create the program are used. Library files are generated with extension '.lib'. LIB51' from

Keil Software is an example for a library creator and it is used for creating library files for

A51 Assembler/ C51 Compiler for 8051 specific controller.

Linker and Locater: Linker and Locater is a software utility responsible for "linking the

various object modules in a multi-module project and assigning absolute address to each

module". Linker is a program which combines the target program with the code of other

programs (modules) and library routines. During the process of linking, the absolute

object module is created.

An absolute object file or module does not contain any re-locatable code or data. All

code and data reside at fixed memory locations. The absolute object file is used for creating

hex files for dumping into the code memory of the processor/ controller. BL51' from Keil

Software is an example for a Linker & Locater for A51 Assembler/ C51 Compiler for 8051

specific controller.

Object to Hex File Converter: This is the final stage in the conversion of Assembly

language (mnemonics) to machine understandable language (machine code). Hex File is the

representation of the machine code and the hex file is dumped into the code memory of the

processor/controller. The hex file representation varies depending on the target

processor/controller make.

HEX files are ASCII files that contain a hexadecimal representation of target

application. Hex file is created from the final 'Absolute Object File' using the Object to Hex

File Converter utility. 'OH51' from Keil software is an example for Object to Hex File

Converter utility for A51 Assembler/C51 Compiler for 8051 specific controller.

Advantages of Assembly Language Base Development:

 Efficient Code Memory and Data Memory Usage (Memory Optimization): Since

the developer is well versed with the target processor architecture and memory

organization, optimized code can be written for performing operations. This leads to

less utilization of code memory and efficient utilization of data memory.

 High Performance: Optimized code not only improves the code memory usage but

also improves the total system performance. Through effective assembly coding,

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 7

optimum performance can be achieved for a target application.

 Low Level Hardware Access: Most of the code for low level programming like

accessing external device specific registers from the operating system kernel, device

drivers, and low level interrupt routines, etc. are making use of direct assembly

coding since low level device specific operation support is not commonly available

with most of the high-level language cross compilers.

 Code Reverse Engineering: Reverse engineering is the process of understanding the

technology behind a product by extracting the information from a finished product.

Reverse engineering is performed by 'hawkers' to reveal the technology behind

'Proprietary Products’.

Drawbacks of Assembly Language Based Development:

 High Development Time: Assembly language is much harder to program than high

level languages. The developer must have thorough knowledge of the architecture,

memory organization and register details of the target processor in use. Learning the

inner details of the processor and its assembly instructions is highly time consuming

and it creates a delay impact in product development.

 Developer Dependency: Unlike high level languages, there is no common written

rule for developing assembly language based applications. In assembly language

programming, the developers have the freedom to choose the different memory

location and registers. Also the programming approach varies from developer to

developer depending on his/ her taste.

 Non-Portable: Target applications written in assembly instructions are valid only for

that particular family of processors and cannot be re-used for another target

processors/ controllers. If the target processor/ controller changes, a complete re-

writing of the application using the assembly instructions for the new target

processor/ controller is required.

High Level Language (HLL) Based Development

Any high level language (like C, C++ or Java) with a supported cross compiler for the target

processor can be used for embedded firmware development. Commonly used HLL for

embedded firmware application development is 'C’. ‘C’ is well defined, easy to use HLL with

extensive cross platform development tool support. Nowadays embedded developers are

making use of cross-compilers of C++ for embedded application development.

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 8

The various steps involved in high level language based embedded firmware

development is same as that of assembly language based development except that the

conversion of source file written in high level language to object file is done by a cross-

compiler. The various steps involved in the conversion of a program written in high level

language to corresponding binary file/machine language is illustrated in below figure:

The program written in any of the high level language is saved with the corresponding

language extension (.c for C, .cpp for C++ etc). Any text editor like 'notepad' or 'WordPad '

from Microsoft® or the text editor provided by an Integrated Development (IDE) tool

supporting the high level language can be used for writing the program. Most of the HLLs

support modular programming approach and hence can have multiple source files called

modules. Translation of high level source code to executable object code is done by a cross-

compiler. Cross-compilers for different HLLs for same target processor are different. C51 is

a popular Cross-compiler available for 'C' language for the 8051 family of micro controller.

Conversion of each module's source code to corresponding object file is performed by the

cross compiler. Rest of the steps are same as that of the steps involved in assembly

language based development.

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 9

Advantages of High Level Language Based Development:

 Reduced Development Time: Developer requires less or little knowledge on the

internal hardware details and architecture of the target processor/ controller. Bare

minimal knowledge of the memory organization and register details of the target

processor in use and syntax of the HLL are the only pre-requisites for HLL based

firmware development.

With HLL, each task can be accomplished by lesser number of lines of code

compared to the target processor/ controller specific Assembly language based

development.

 Developer Independency: The syntax used by most of the HLLs are universal and a

program written in the high level language can easily be understood by a second

person knowing the syntax of the language.

 Portability: Target applications written in HLLs are converted to target processor /

controller understandable format (machine codes) by cross-compiler.

An application written in HLL for a particular target processor can easily be

converted to another target processor/ controller specific application, with no/little

modification.

Limitations of High Level Language Based Development

 Poor Optimization by Cross-Compilers: Some cross-compilers available for high

level languages may not be so efficient in generating optimized target processor

specific instructions.

 Not Suitable for Low Level Hardware: HLL based code may not be efficient in

accessing low level hardware where hardware access timing is critical (of the order of

nano or micro seconds).

 High Investment Cost: The investment required for HLL based development tools

(Integrated Development Environment incorporating cross-compiler) is high

compared to Assembly Language based firmware development tools.

TYPES OF FILE GENERATED ON CROSS COMPILATION

Cross compilation is the process of converting the source code written in high level

language to target processor/controller understandable machine code. Following are some

of the files generated upon cross compilation:

List file (.lst), Preprocessor output file, Object file .obj, Map file (.map), & Hex file (.hex)

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 10

1. List File (.LST File)

Listing file is generated during the cross-compilation process and it contains an

information about the cross compilation process like cross compiler details, formatted

source text (‘C’ code), assembly code generated from the source file, symbol tables, errors

and warnings detected during the cross-compilation process. The list file generated contain

the following sections:

Page Header: A header on each page of the listing file indicates the compiler version name,

source file name, Date, Time and Page No.

Example: C51 COMPILER V8.02 SAMPLE 05/23/2006 11:12:58 PAGE 1

Command Line: Represents the entire command line that was used for invoking the

compiler.

COMPILER INVOKED BY: C:\Keil\C51\BIN\C51.EXE sample.c

Source Code: The source code listing outputs the line numbers as well as the source code

on that line. Apart from source code lines, the list file will also include the comments in the

source file.

Assembly listing: It contains the assembly code generated by compiler for the given ‘C’

source code.

Symbol listing: It contains symbolic information about the various symbols present in the

cross compiled source file. Symbol listing contains: name (NAME), symbol classification

(CLASS: SFR, structure, typedef, static, public, auto etc.), memory space (MSPACE: Code

memory or data memory)), data type (TYPE: int, char, call etc.), offset address (OFFSET:

Code memory start address), size in bytes (SIZE).

Module Information: The module information provides the size of initialized and un-

initialized memory areas defined by the source file.

Warnings and Errors: This section of list file records the errors encountered or any

statement that may create issues in application (Warnings), during cross compilation.

C51 COMPILATION COMPLETE. 0 WARNING(S), 0 ERROR(S).

2. Preprocessor output file

The preprocessor output file generated during cross compilation contains preprocessor

output for preprocessor instructions used in the source file. This file is used for verifying

the operation of Macros and conditional preprocessor directive. The preprocessor output file

is a valid C source file.

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 11

3. Object file (.OBJ File)

Cross-compiling/assembling each source module converts the various Embedded C/

Assembly instructions and other directives present in the module to an object (OBJ) file.

The format of the .OBJ file is cross compiler dependent. OMF51 or OMF2 are the two

objects file formats supported by C51 cross compiler. The list of some of the details stored

in an object file is given below:

1. Reserved memory for global variables.

2. Public symbol (variable and function) names.

3. External symbol (variable and function) references.

4. Library files with which to link.

5. Debugging information to help synchronise source lines with object code.

The object code present in the object file are not absolute, meaning, the code is not

allocated fixed memory location in code memory. It is the responsibility of the linker/locater

to assign an absolute memory location to the object code.

4. Map File (.MAP)

The object files so created are re-locatable codes, meaning their location in the code

memory is not fixed. It is the responsibility of a linker to link all these object files. The

locater is responsible for locating absolute address to each module in the code memory.

Linking and locating of re-locatable object files will also generate a list file called 'linker list

file' or 'map file'.

Map file contains information about the link/locate process and is composed of a

number of sections. The different sections listed in a map file are cross compiler dependent.

The information generally held by map files is listed below

Page Header: A header on each page of the linker listing (MAP) file which indicates the

linker version number, date, time, and page number.

e.g. BL51 BANKED LINKER/LOCATER V6.22 10/16/2014 15:47:10 PAGE 1

Command Line: Represents the entire command line that was used for invoking the linker.

BL51 BANKED LINKER/LOCATER V6.22, INVOKED BY: C:\KEIL V5\C511 BIN\BL51.EXE

sample.obj, STARTUP.obj TO Sample

CPU Details: Details about the target CPU and memory model (internal data memory,

external data memory. paged data memory, etc.) come under this category.

e.g. MEMORY MODEL: SMALL

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 12

Input Modules: It includes the names of all the object files, library files and other files that

are included in the linking process.

Memory Map: It lists the starting address, length, relocation type and name of each

segment in the program.

Symbol Table: It contains the name, value and type for all symbols from different input

modules.

Inter Module Cross Reference: The cross reference listing includes the section name,

memory type and module names in which it is defined and all modules where it is accessed.

Program Size: It contains the size of various memory areas, constants and code space for

the entire application.

Warnings and Errors: It contains the warnings and errors that are generated while linking

a program. It is used in debugging link errors.

LINK / LOCATE RUN COMPLETE. 0 WARNING(S), 0 ERROR(S).

5. Hex file (.HEX File)

Hex file is the binary executable file created from the source code. The absolute object file

created by the linker/locater is converted into processor understandable binary code. Hex

files embed the machine code in a particular format. The format of Hex file varies across the

family of processors/controllers.

Intel HEX and Motorola HEX are the two commonly used hex file formats in

embedded applications.

1. Intel Hex File Format: Intel HEX file is composed of a number of hex records. Each

record is made up of five fields in the following format:

 :llaaaattdd….cc

Each group of letters corresponds to a different field, and each letter represents a

single hexadecimal digit. Each field is composed of at least two hexadecimal digits (which

make up a byte) as described below:

Field Description

: The colon indicating the start of every Intel HEX record

ll

aaaa

tt

Record length field representing the number of data bytes (dd) in the record.

Address field representing the starting address for subsequent data in the record.

Field indicating the HEX record type. According to its value it can be of the

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 13

following types:

00: Data Record

01: End of File Record

02: 8086 Segment Address Record

04: Extended Linear Address record

dd Data field that represents one byte of data. A record can have number of data

bytes. The number of data bytes in the record must match to the number

specified by the ‘ll' field

cc Checksum field representing the checksum of the record. Checksum is calculated

by adding the values of all hexadecimal digit pairs in the record and taking

modulo 256.

2. Motorola HEX file format: Motorola file is an ASCII text file where the HEX data is

represented in ASCII format in lines. The lines in Motorola HEX file represent a HEX

Record. Each record is made up of hexadecimal numbers that represent machine-language

code and/or constant data. The general form of Motorola Hex record is given below:

SOR RT Length Start Address Data / Code Checksum

In other words it can be represented as: Stllaaaaddddd...cc

The fields of the record are explained below:

Field Description

SOR Stands for Start of record. The ASCII Character 'S' is used as the Start of

Record. Every record begins with the character 'S'

RT Stands for Record type. The character “t” represents the type of record in the

general format. There are different meanings for the record depending on the

value of t:

0: Header. Indicates the beginning of Hex File

1: Data Record with 16bit start address

2: Data record with 24bit start address

9: End of File Record

Length

(ll)

Stands for the count of the character pairs in the record. Two ASCII characters

'Il represent the length field. Each ‘l’ can take values 0 to 9 and A to F.

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 14

Start

Address

(aaaa)

Address field representing the starting address for subsequent data in the

record.

Code/

Data

(dd)

Data field that represents one byte of data. A record can have number of data

bytes. The number of data bytes in the record must match to the number

specified by ‘ll’

Check-

sum

(cc)

Checksum field representing the checksum of the record. Checksum is

calculated by adding the values of all hexadecimal digit pairs in the record and

taking modulo 256.

DISASSEMBLER / DECOMPILER

Disassembler is a utility program which converts machine codes into target processor

specific Assembly codes/instructions. The process of converting machine codes into

Assembly code is known as 'Disassembling’. In operation, disassembling is complementary

to assembling/cross assembling.

Decompiler is the utility program for translating machine codes into corresponding

high level language instructions. Decompiler performs the reverse operation of

compiler/cross-compiler. The disassemblers/decompilers for different family of processors

/controllers are different. Disassemblers/Decompilers are deployed in reverse engineering.

Disassemblers/ Decompilers are powerful tools for analysing the presence of

malicious codes (virus information) in an executable image. Disassemblers/Decompilers are

available as either freeware tools readily available for free download from internet or as

commercial tools.

SIMULATORS, EMULATORS AND DEBUGGING

Simulators and emulators are two important tools used in embedded system development.

Simulator is a software tool used for simulating the various conditions for checking the

functionality of the application firmware. The Integrated Development Environment (IDE)

itself will be providing simulator support and help in debugging the firmware for checking

its required functionality. In certain scenarios, simulator refers to a soft model (GUI model)

of the embedded product. Emulator is hardware device which emulates the functionalities

of the target device and allows real time debugging of the embedded firmware in a hardware

environment.

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 15

Simulators

Simulators simulate the target hardware and the firmware execution can be inspected

using simulators. The features of simulator based debugging are listed below:

1. Purely software based.

2. Doesn't require a real target system.

3. Very primitive (Lack of featured I/O support. Everything is a simulated one)

4. Lack of Real-time behaviour

Advantages of Simulator Based Debugging: Simulator based debugging techniques are

simple and straightforward. The major advantages of simulator based firmware debugging

techniques are:

 No Need for Original Target Board: Simulator based debugging technique is purely

software oriented. IDE's software support simulates the CPU of the target board.

Since the real hardware is not required, firmware development can start well in

advance and this saves development time.

 Simulated I/O Peripherals: Simulator provides the option to simulate various I/O

peripherals. Hence it eliminates the need for connecting I/O devices for debugging

the firmware.

 Simulates Abnormal Conditions: It helps the developer in simulating abnormal

operational environment for firmware and helps the firmware developer to study the

behaviour of the firmware under abnormal input conditions.

Limitations of Simulator based Debugging: Though simulation based firmware possess

certain limitations and we cannot fully rely upon the simulator-based firmware debugging.

Some of the limitations of simulator-based debugging are:

 Deviation from Real Behaviour: Simulation based firmware debugging is always

carried out in a development environment where the developer may not be able to

debug the firmware under all possible combinations of input. We may get some

particular result and it need not be the same when the firmware runs in a production

environment.

 Lack of Real Timeliness: The major limitation of simulator based debugging is that

it is not real-time in behaviour. The debugging is developer driven and moreover in a

real application the I/O condition may be varying or unpredictable. Simulation goes

for simulating those conditions for known values.

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 16

EMULATORS AND DEBUGGERS

Debugging is the process of diagnosing the firmware execution, monitoring the target

processor's registers and memory, while the firmware is running and checking the signals

from various buses of the embedded hardware. Debugging process in embedded application

is broadly classified into two:

 Hardware debugging deals with the monitoring of various bus signals and checking

the status lines of the target hardware.

 Firmware debugging deals with examining the firmware execution, execution flow,

changes to various CPU registers and status registers on execution of the firmware to

ensure that the firmware is running as per the design.

Firmware debugging is performed to figure out the bug or the error in the firmware which

creates the unexpected behavior. Types of firmware debugging are:

1. Incremental EEPROM Burning Technique

2. Inline Breakpoint Based Firmware Debugging

3. Monitor Program Based Firmware Debugging

4. In Circuit Emulator (ICE) Based Firmware Debugging

5. On Chip Firmware Debugging (OCD)

1. Incremental EEPROM Burning Technique

This is the most primitive type of firmware debugging technique. In this, the code is

separated into different functional code units. The entire code is not burnt into the

EEPROM chip at once. The code is burned in incremental order. The code corresponding to

all functionalities are separately coded, cross-compiled and burned into the chip one by

one.

2. Inline Breakpoint Based Firmware Debugging

Within the firmware where you want to ensure that firmware execution is reaching up to a

specified point, insert an inline debug code immediately after the point. The debug code is a

printf() function which prints a string given as per the firmware. You can insert debug

codes (printf()) commands at each point where you want to ensure the firmware execution

is covering that point. Cross-compile the source code with the debug codes embedded

within it. Burn the corresponding hex file into the EEPROM.

3. Monitor Program Based Firmware Debugging

In this approach a monitor program which acts as a supervisor is developed. The monitor

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 17

program controls the downloading of user code into the code memory, inspects and

modifies register/ memory locations; allows single stepping of source code, etc. The monitor

program implements the debug functions as per a pre-defined command set from the debug

application interface.

The first step in any monitor program development is determining a set of commands for

performing various operations like firmware downloading, memory/ register inspection/

modification, single stepping, etc. The entire code stuff handling the command reception

and corresponding action implementation is known as the "monitor program". The

most common type of interface used between target board and debug application is RS-

232C Serial interface.

The monitor program contains the following set of minimal features:

1. Command set interface to establish communication with the debugging application

2. Firmware download option to code memory

3. Examine and modify processor registers and working memory (RAM)

4. Single step program execution

5. Set breakpoints in firmware execution

6. Send debug information to debug application running on host machine.

4. In Circuit Emulator (ICE) Based Firmware Debugging

Emulator' is a self-contained hardware device which emulates the target CPU. The emulator

hardware contains necessary emulation logic and it is hooked to the debugging application

running on the development PC on one end and connects to the target board through some

interface on the other end. The Emulator POD (shown in figure) forms the heart of any

emulator system and it contains the following functional units:

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 18

 Emulation Device: is a replica of the target CPU which receives various signals from the

target board through a device adaptor and performs the execution of firmware under the

control of debug commands from the debug application.

 Emulation Memory: is the RAM incorporated in the Emulator device. It acts as a

replacement to the target board's EEPROM where the code is supposed to be

downloaded after each firmware modification. Hence the original EEPROM memory is

emulated by the RAM of emulator. This is known as 'ROM Emulation'.

 Emulator Control Logic: is the logic circuits used for implementing complex hardware

breakpoints, trace buffer trigger detection, trace buffer control, etc. They are also used

for implementing logic analyzer functions in advanced emulator devices. The 'Emulator

POD' is connected to the target board through a 'Device adaptor' and signal cable.

 Device Adaptors: act as an interface between the target board & emulator POD. Device

adaptors are used for routing the various signals from pins assigned for the target

processor. The device adaptor is connected to the emulator POD using ribbon cables.

5. On Chip Firmware Debugging (OCD)

Today almost all processors/controllers incorporate built in debug modules called On Chip

Debug (OCD) support. It is a very good feature supporting fast and efficient firmware

debugging. The On Chip Debug facilities integrated to the processor/ controller are chip

vendor dependent and most of them are proprietary technologies. Processors/controllers

with OCD support incorporate a dedicated debug module to the existing architecture.

Usually the on-chip debugger provides the means to set simple breakpoints, query the

internal state of the chip and single step through code. OCD module implements dedicated

registers for controlling debugging.

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 19

BDM and JTAG are the two commonly used interfaces to communicate between the

Debug application running on Development PC and OCD module of target CPU.

Background Debug Mode (BDM) interface is a proprietary On Chip Debug solution

from Motorola. BDM defines the communication interface between the chip resident debug

core and host PC where the BDM compatible remote debugger is running.

Chips with JTAG debug interface contain a built-in JTAG port for communicating

with the remote debugger application. JTAG is the acronym for Joint Test Action Group.

The signal lines of JTAG protocol are GIVEN below:

 Test Data In (TDI)

 Test Data Out (TDO)

 Test Clock (TCK)

 Test Mode Select (TMS)

 Test Reset (TRST)

