
[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 1

MODULE 5: Real-time Operating System (RTOS) based Embedded System Design:

Operating System basics, Types of Operating Systems, Tasks, Process and Threads,

Multiprocessing and Multitasking, Task Scheduling

OPERATING SYSTEM BASICS

Operating System (OS) acts as a bridge between the user applications/ tasks and the

underlying system resources through a set of system functionalities and services. Operating

system manages the system resources and makes them available to the user

applications/tasks on a need basis.

The primary functions of operating systems are:

 Make the system convenient to use

 Organize and manage the system resources efficiently and correctly.

Figure below gives an insight into the basic components of an operating system and their

interfaces with rest of the world.

Kernel: The kernel is the core of the operating system. It is responsible for managing the

system resources and the communication among the hardware and other system services.

Kernel acts as the abstraction layer between system resources and user applications.

Kernel contains a set of system libraries and services. For a general purpose OS, the kernel

contains different services like:

 Process management

 Memory management

 Time management

 File system management

 I/O system management.

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 2

1. Process management: Process management deals with managing the process/ tasks.

Process management includes:

 setting up a memory for the process

 loading process code into memory

 allocating system resources

 scheduling and managing the execution of the process

 setting up and managing Process Control Block (PCB)

 inter process communication and synchronization

 process termination/ deletion, etc.

2. Primary Memory Management: Primary memory refers to a volatile memory (RAM),

where processes are loaded and variables & shared data are stored. The Memory

Management Unit (MMU) of the kernel is responsible for:

 Keeping a track of which part of the memory area is currently used by which process.

 Allocating and De-allocating memory space on a need basis.

3. File System Management: File is a collection of related information. A file could be a

program (source code or executable), text files, image files, word documents, audio/ video

files, etc. A file system management service of kernel is responsible for:

 The creation, deletion and alteration of files

 Creation, deletion, and alteration of directories

 Saving of files in the secondary storage memory

 Providing automatic allocation of file space based on the amount of free running

space available

 Providing flexible naming conversion for the files.

4. I/O System (Device) Management: Kernel is responsible for routing the I/O requests

coming from different user applications to the appropriate I/O devices of the system. The

direct access to I/O devices is not allowed; access to them is establish through Application

Programming Interface (API). The kernel maintains list of all the I/O devices of the system.

The service “Device Manager‟ of the kernel is responsible for handling all I/O related

operations. The Device Manager is responsible for:

 Loading and unloading of device drivers

 Exchanging information and the system specific control signals to and from the

device.

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 3

5. Secondary Storage Management: The secondary storage management deals with

managing the secondary storage memory devices (if any) connected to the system.

Secondary memory is used as backup medium for programs and data, as main memory is

volatile. In most of the systems secondary storage is kept in disks (hard disks). The

secondary storage management service of kernel deals with:

 Disk storage allocation

 Disk scheduling

 Free disk space management

6. Protection Systems: Modern operating systems are designed in such way to support

multiple users with different levels of access permissions. The protection deals with

implementing the security policies to restrict the access of system resources and particular

user by different application or processes and different user.

7. Interrupt Handler: Kernel provides interrupt handler mechanism for all external/

internal interrupt generated by the system.

The important services offered by the kernel of an OS:

1. Kernel Space and User Space: The program code corresponding to the kernel

applications/ services are kept in a contiguous area of primary (working) memory and is

protected from the un-authorized access by user programs/ applications.

 The memory space at which the kernel code is located is known as “Kernel Space‟. All

user applications are loaded to a specific area of primary memory and this memory

area is referred as “User Space‟.

 The partitioning of memory into kernel and user space is purely OS dependent.

 Most of the operating systems keep the kernel application code in main memory and

it is not swapped out into the secondary memory.

2. Monolithic Kernel and Microkernel: Kernel forms the heart of OS. Different

approaches are adopted for building an operating system kernel. Based on the kernel

design, kernels can be classified into “Monolithic‟ and “Micro‟.

Monolithic Kernel: In monolithic kernel architecture, all kernel services run in the kernel

space. All kernel modules run within the same memory space under a single kernel thread.

Allows effective utilization of the low-level features of the underlying system. The major

drawback is that any error or failure in any one of the kernel modules leads to the crashing

of the entire kernel application. LINUX, SOLARIS, MS-DOS kernels are the examples.

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 4

Microkernel: The microkernel design iincorporates only essential set of OS services into

the kernel. The rest of the OS services are implemented in program known as “Servers‟

which runs in user space. The memory management, timer systems and interrupt handlers

are the essential services, which forms the part of the microkernel. The benefits of micro

kernel based designs are:

 Robustness: If a problem is encountered in any of the services, which runs as a

server can be reconfigured and restarted without the restarting the entire OS. Here

chances of corruption of kernel services are ideally zero.

 Configurability: Any services, which runs as a server application can be changed

without the need to restart the whole system.

TYPES OF OPERATING SYSTEMS

Depending on the type of kernel and kernel services, purpose and type of computing

systems where the OS is deployed and the responsiveness to applications, Operating

Systems are classified into:

 General Purpose Operating System (GPOS)

 Real Time Purpose Operating System (RTOS)

1. General Purpose Operating System (GPOS): Operating systems, which are deployed in

general computing systems. The kernel is more generalized and contains all the required

services to execute generic applications. Need not be deterministic in execution behaviour.

May inject random delays into application software and thus cause slow responsiveness of

an application at unexpected times. Personal Computer/Desktop system is typical example

for a system where GPOSs are deployed. Windows XP/MS-DOS are examples of GPOS.

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 5

2. Real Time Operating System (RTOS): Operating Systems, which are deployed in

embedded systems demanding real-time response. Real Time implies deterministic in timing

behavior. RTOS services consumes only known and expected amounts of time regardless

the number of services. RTOS implements policies and rules concerning time-critical

allocation of a system’s resources. RTOS decides which applications should run in which

order and how much time needs to be allocated for each application. Windows Embedded

Compact, QNX, VxWorks MicroC/OS-II, etc., are examples of RTOSs.

Real-Time kernel: The kernel of a Real-Time OS is referred as Real-Time kernel. The

Real-Time kernel is highly specialized and it contains only the minimal set of services

required for running user applications/ tasks. The basic functions of a Real-Time kernel

are listed below:

 Task/ Process management

 Task/ Process scheduling

 Task/ Process synchronization

 Error/ Exception handling

 Memory management

 Interrupt handling

 Time management.

i) Task/ Process management: Deals with setting up the memory space for the tasks,

loading the tasks code into the memory space, allocating system resources and setting up a

Task Control Block (TCB) for the task and task/process termination/deletion. A TCB is

used for holding the information corresponding to a task. TCB usually contains the

following set of information:

 Task ID: Task Identification Number

 Task State: The current state of the task.

 Task Type: Task type. Indicates what is the type for this task.

 Task Priority: Task priority

 Task Context Pointer: Context pointer. Pointer for context saving

 Task Memory Pointers: Pointers to the code memory, data memory and stack memory

 Task System Resource Pointers: Pointers to system resources

 Task Pointers: Pointers to other TCBs

ii) Task/ Process Scheduling: Deals with sharing the CPU among various tasks/

processes. A kernel application called “Scheduler‟ handles the task scheduling. Scheduler

is an algorithm implementation, which performs the efficient and optimal scheduling of

tasks to provide a deterministic behavior.

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 6

iii) Task/ Process Synchronization: Deals with synchronizing the concurrent access of a

resource, which is shared across multiple tasks and the communication between various

tasks.

iv) Error/ Exception Handling: Deals with registering and handling the errors occurred/

exceptions raised during the execution of tasks. Insufficient memory, timeouts, deadlocks,

deadline missing, bus error, divide by zero, unknown instruction execution etc., are

examples of errors/exceptions. Errors/ Exceptions can happen at the kernel level services

or at task level. Deadlock is an example for kernel level exception, whereas timeout is an

example for a task level exception.

Deadlock is a situation where a set of processes are blocked because each process is

holding a resource and waiting for another resource acquired by some other process.

Timeouts and retry are two techniques used together. The tasks retries an event/ message

certain number of times; if no response is received after exhausting the limit, the feature

might be aborted.

v) Memory Management: The memory allocation time increases depending on the size of

the block of memory need to be allocated and the state of the allocated memory block.

RTOS achieves predictable timing and deterministic behavior, by compromising the

effectiveness of memory allocation. RTOS generally uses “block‟ based memory allocation

technique, instead of the usual dynamic memory allocation techniques used by the GPOS.

RTOS kernel uses blocks of fixed size of dynamic memory and the block is allocated

for a task on a need basis. The blocks are stored in a “Free buffer Queue‟. The memory

management function a block of fixed memory is always allocated for tasks on need basis

and it is taken as a unit. Hence, there will not be any memory fragmentation issues.

vi) Interrupt Handling: Interrupts inform the processor that an external device or an

associated task requires immediate attention of the CPU. Interrupts can be either

Synchronous or Asynchronous.

Interrupts which occurs in sync with the currently executing task is known as

Synchronous interrupts. Eg: Divide by zero, memory segmentation error etc. Interrupts

which occurs at any point of execution of any task, and are not in sync with the currently

executing task are Asynchronous interrupts. Eg: Timer overflow interrupts, serial data

reception/ transmission interrupts etc. Priority levels can be assigned to the interrupts and

each interrupts can be enabled or disabled individually.

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 7

vii) Time Management: The time reference to kernel is provided by a high-resolution Real

Time Clock (RTC) hardware chip (hardware timer). The hardware timer is programmed to

interrupt the processor/ controller at a fixed rate. This timer interrupt is referred as “Timer

tick‟. The Timer tick is taken as the timing reference by the kernel. Usually, the Timer tick

varies in the microseconds range. The System time is updated based on the Timer tick.

Types of Real Time System

Hard Real-Time: A Real Time Operating Systems which strictly adheres to the timing

constraints for a task is referred as hard real-time systems. A Hard RTS must meet the

deadlines for a task without any slippage. Missing any deadline may produce catastrophic

results for Hard RTS, including permanent data lose & irrecoverable damages to the

system/users. Most of the Hard Real Time Systems are automatic.

Eg: Air bag control systems and Anti-lock Brake Systems (ABS) of vehicles are typical

examples of Hard Real Time Systems.

Soft Real-Time: Real Time Operating Systems that does not guarantee meeting deadlines,

but, offer the best effort to meet the deadline are referred as soft real-time systems. Missing

deadlines for tasks are acceptable if the frequency of deadline missing is within the

compliance limit of the Quality of Service (QoS).

Automatic Teller Machine (ATM) is a typical example of Soft Real Time System. If the

ATM takes a few seconds more than the ideal operation time, nothing fatal happens.

TASKS, PROCESSES AND THREADS

The term “task‟ refers to something that needs to be done. In the Operating System

context, a task is defined as the program in execution and the related information

maintained by the Operating system for the program. Task is also known as “Job‟ in the

operating system context.

A program or part of it in execution is also called a “Process‟. The terms “Task‟, “Job‟

and “Process‟ refer to the same entity in the Operating System context and most often they

are used interchangeably.

Process: A Process is a program, or part of it, in execution. Process is also known as an

instance of a program in execution. A process requires various system resources like CPU

for executing the process, memory for storing the code corresponding to the process and

associated variables, I/O devices for information exchange etc.

Structure of a Processes: The concept of Process leads to concurrent execution of

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 8

tasks and thereby, efficient utilization of the CPU and other system resources. Concurrent

execution is achieved through the sharing of CPU among the processes.

A process mimics a processor in properties and holds a set of registers, process

status, a Program Counter (PC) to point to the next executable instruction of the process, a

stack for holding the local variables associated with the process and the code

corresponding to the process. This can be visualized as shown in below figure.

Memory Organization of Process: The memory occupied by the process is

segregated into three regions namely: Stack memory, Data memory and Code memory.

 “Stack‟ memory holds all temporary data such as variables local to the process.

 “Data‟ memory holds all global data for the process.

 “Code‟ memory contains the program code corresponding to the process.

On loading a process into the main memory, a specific area of memory is allocated for the

process. The stack memory usually starts at the highest memory address from the memory

area allocated for the process.

Process States & State Transition

The process traverses through a series of states during its transition from the newly created

state to the terminated state. The cycle through which a process changes its state from

“newly created‟ to “execution completed‟ is known as “Process Life Cycle‟. The various

states through which a process traverses through during a Process Life Cycle indicates the

current status of the process with respect to time & also provides information on what it is

allowed to do next. The transition of a process from one state to another is known as “State

transition‟. The Process states & state transition representation are shown in below figure.

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 9

Created State: The state at which a process is being created. The OS recognizes a process

in the “Created State‟ but no resources are allocated to the process.

Ready State: The state, where a process is incepted into the memory and awaiting the

processor time for execution. At this stage, the process is placed in the “Ready list‟ queue

maintained by the OS.

Running State: The state where in the source code instructions corresponding to the

process is being executed. Running state is the state at which the process execution

happens.

Blocked State/ Wait State: Refers to a state where a running process is temporarily

suspended from execution & does not have immediate access to resources.

Completed State: A state where the process completes its execution.

Thread: A thread is the primitive that can execute code. A thread is a single sequential flow

of control within a process. A thread is also known as lightweight process.

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 10

A process can have many threads of

execution. Different threads, which are

part of a process, share the same address

space; meaning they share the data

memory, code memory and heap memory

area. Threads maintain their own thread

status (CPU register values), Program

Counter (PC) and stack. The memory

model for a process and its associated

threads are given in figure.

The Concept of Multithreading: The process is split into multiple threads, which

executes a portion of the process; there will be a main thread and rest of the threads will be

created within the main thread. The multithreaded architecture of a process can be

visualized with the thread-process diagram, shown.

Advantages of Multiple threads: Use of multiple threads to execute a process brings

the following advantage:

 Better memory utilization: Multiple threads of the same process share the address

space for data memory. This also reduces the complexity of inter thread

communication.

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 11

 Speed: Since the process is split into different threads, when one thread enters a wait

state, the CPU can be utilized by other threads of the process. This speeds up the

execution of the process.

 Efficient CPU utilization: The CPU is engaged all time.

Differences between Threads and Processes

MULTIPROCESSING AND MULTITASKING

The ability to execute multiple processes simultaneously is referred as multiprocessing.

Systems which are capable of performing multiprocessing are known as multiprocessor

systems. Multiprocessor systems possess multiple CPUs and can execute multiple

processes simultaneously.

The ability of the Operating System to have multiple programs in memory, which are

ready for execution, is referred as multiprogramming. In a Uni-processor system, it is not

possible to execute multiple processes simultaneously. Multitasking refers to the ability of

an operating system to hold multiple processes in memory and switch the processor (CPU)

from executing one process to another process.

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 12

Multitasking: Multitasking involves “Context switching‟, “Context saving‟ and “Context

retrieval‟. (shown in figure)

 The act of switching CPU among the processes or changing the current execution

context is known as "Context switching‟.

 The act of saving the current context (details like Register details, Memory details,

System Resource Usage details, Execution details, etc.) for the currently running

processes at the time of CPU switching is known as “Context saving‟.

 The process of retrieving the saved context details for a process, which is going to be

executed due to CPU switching, is known as “Context retrieval‟.

Types of Multitasking: Depending on how the task/ process execution switching act is

implemented, multitasking can is classified into –

 Co-operative Multitasking

 Preemptive Multitasking

 Non-preemptive Multitasking

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 13

1. Co-operative Multitasking: Co-operative Multitasking is the most primitive form of

multitasking in which a task/ process gets a chance to execute only when the currently

executing task/ process voluntarily relinquishes the CPU.

In this method, any task/ process can avail the CPU as much time as it wants. Since

this type of implementation involves the mercy of the tasks each other for getting the CPU

time for execution, it is known as co-operative multitasking. If the currently executing task

is non-cooperative, the other tasks may have to wait for a long time to get the CPU.

2. Preemptive Multitasking: Preemptive multitasking ensures that every task/ process

gets a chance to execute. When and how much time a process gets is dependent on the

implementation of the preemptive scheduling.

As the name indicates, in preemptive multitasking, the currently running

task/process is preempted to give a chance to other tasks/process to execute. The

preemption of task may be based on time slots or task/ process priority.

3. Non-preemptive Multitasking: The process/ task, which is currently given the CPU

time, is allowed to execute until it terminates (enters Completed state) or enters Blocked/

Wait state, waiting for an I/O. The co-operative and non-preemptive multitasking differs in

their behaviour when they are in the Blocked/Wait state.

In co-operative multitasking, the currently executing process/task need not

relinquish the CPU when it enters the Blocked/ Wait sate, waiting for an I/O, or a shared

resource access or an event to occur whereas in non-preemptive multitasking the currently

executing task relinquishes the CPU when it waits for an I/O.

TASK SCHEDULING

Determining which task/process is to be executed at a given point of time is known as

task/process scheduling. Scheduling policies forms the guidelines for determining which

task is to be executed when. The kernel service/application which implements the

scheduling algorithm, is known as 'Scheduler. Process scheduling decision may take place

when a process switches its state to:

1. Ready state from Running state

2. Blocked/Wait state from Running state

3. Ready state from Blocked/Wait state

4. Completed state

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 14

A process switches to Ready state from the Running state when it is preempted. Hence,

the type of scheduling in scenario 1 is pre-emptive. When a high priority process in the

Blocked/Wait state completes its I/O and switches to the Ready state, the scheduler picks

it for execution if the scheduling policy used is priority based preemptive. This is indicated

by scenario 3.

In preemptive/non-preemptive multitasking, the process relinquishes the CPU when

it enters the Blocked/Wait state or the Completed state and switching of the CPU

happens at this stage. Scheduling under scenario 2 can be either preemptive or non-

preemptive. Scheduling under scenario 4 can be preemptive, non-preemptive or co-

operative.

The selection of a scheduling criterion/algorithm should consider the following factors:

 CPU Utilisation: The scheduling algorithm should always make CPU utilisation high.

 Throughput: Gives an indication of the number of processes executed per unit of time

 Turnaround Time: Amount of time taken by a process for completing its execution.

 Waiting Time: It is the amount of time spent by a process in the 'Ready' queue

waiting to get the CPU time for execution.

 Response Time: It is the time elapsed between the submission of a process and the

first response.

The Operating System maintains various queues in connection with the CPU

scheduling, and a process passes through these queues during the course of its admittance

to execution completion. The various queues maintained by OS in association with CPU

scheduling are:

Job Queue: Job queue contains all the processes in the system

Ready Queue: Contains all the processes, which are ready for execution and waiting for

CPU to get their turn for execution. The Ready queue is empty when there is no process

ready for running.

Device Queue: Contains the set of processes, which are waiting for an I/O device. A

process migrates through all these queues during its journey from 'Admitted to 'Completed

stage.

Figure below illustrates the transition of a process through the various queues.

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 15

Non-preemptive Scheduling

Non-preemptive scheduling is employed in systems, which implement non-preemptive

multitasking model. In this scheduling type, the currently executing task/process is

allowed to run until it terminates or enters the 'Wait' state waiting for an I/O or system

resource. The various types of non-preemptive scheduling adopted in task/process

scheduling are listed below:

1. First-Come-First-Served (FCFS)/ FIFO Scheduling

As the name indicates, the First-Come-First-Served (FCFS) scheduling algorithm allocates

CPU time to the processes based on the order in which they enter the 'Ready' queue. The

first entered process is serviced first. FCFS scheduling is also known as First In First Out

(FIFO) where the process which is put first into the 'Ready queue is serviced first.

Example 1: Three processes with process ID’s P1, P2, P3 with estimated completion time

10, 5, 7 milliseconds respectively enters the ready queue together in the order P1, P2, P3.

Calculate the waiting time and Turn Around Time (TAT) for each process and the average

waiting time and Turn Around Time (Assuming there is no 1/0 waiting for the processes).

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 16

Solution: The sequence of execution of the processes by the CPU is represented as

P1 P2 P3

Assuming the CPU is readily available at the time of arrival of P1, P1 starts executing

without any waiting in the 'Ready' queue. Hence the waiting time for P1 is zero. Thus, the

waiting time for all processes are given as:

Waiting Time for P1 = 0

Waiting Time for P2 = 10ms (P2 starts executing after completing P1)

Waiting Time for P3 = 15ms (P3 starts executing after completing P1 and P2)

Average waiting time = (Waiting time for all processes) / No. of Processes

 = (0 + 10 +15) / 4 = 8.33 milliseconds.

Turn Around Time (TAT) = Time spent in Ready Queue (Waiting time) + Execution Time

Turn Around Time (TAT) for P1 = 10ms (0 + 10)

Turn Around Time (TAT) for P2 = 15ms (10 + 5)

Turn Around Time (TAT) for P3 = 22ms (15 + 7)

Average Turn Around Time (TAT) = Average waiting time + Average execution time.

Average Execution Time = (Execution time for all processes)/No. of processes

 = 10 + 5 + 7 / 3 = 7.33 milliseconds.

Average Turn Around Time (TAT) = 8.33 + 7.33 = 15.66 milliseconds.

NOTE: Average Turn Around Time (TAT) = TAT of all processes / No. of Processes

 = (10+15+22)/3 = 15.66 milliseconds.

2. Last-Come-First Served (LCFS)/LIFO Scheduling

The Last-Come-First Served (LCFS) scheduling algorithm also allocates CPU time to the

processes based on the order in which they are entered in the 'Ready' queue. The last

entered process is serviced first. LCFS scheduling is also known as Last In First Out (LIFO)

where the process, which is put last into the 'Ready' queue, is serviced first.

Example 1: Three processes with process ID’s P1, P2, P3 with estimated completion time

10, 5, 7 milliseconds respectively enters the ready queue together in the order P1, P2, P3.

Now a new process P4 with estimated completion time 6ms enters the 'Ready' queue after

5ms of scheduling Pl. Calculate the waiting time and Turn Around Time (TAT) for each

process and the Average waiting time and Turn Around Time.

Solution: Initially there is only P1 available in the Ready queue and the scheduling

sequence will be P1, P3, P2. P4 enters the queue during the execution of P1 and becomes

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 17

the last process entered the 'Ready' queue. Now the order of execution changes to P1, P4,

P3, and P2 as given below:

P1 P4 P3 P2

 The waiting time for all the processes is given as:

Waiting Time for P1 = 0ms (P1 starts executing first)

Waiting Time for P4 = 5ms (P4 starts executing after completing Pl. But P4 arrived after

5ms of execution of P1. Hence it’s waiting time = Execution start time - Arrival Time = 5)

Waiting Time for P3 = 16ms (P3 starts executing after completing Pl and P4)

Waiting Time for P2 = 23ms (P2 starts executing after completing P1, P4 and P3)

Average waiting time = (Waiting time for all processes) / No. of Processes

= 0+5+16+23 / 4 = 11 milliseconds.

Turn Around Time (TAT) = Time spent in Ready Queue (Waiting time) + Execution Time

Turn Around Time (TAT) for P1 = 10ms (0 + 10)

Turn Around Time (TAT) for P4 = 11ms ((10-5) + 6)

Turn Around Time (TAT) for P3 = 23ms (16 + 7)

Turn Around Time (TAT) for P3 = 28ms (23 + 5)

Average Turn Around Time (TAT) = TAT of all processes / No. of Processes

 = (10+11+23+28) / 4 = 18 milliseconds.

3. Shortest Job First (SJF) Scheduling

Shortest Job First (SJF) scheduling algorithm 'sorts the 'Ready' queue' each time a process

relinquishes the CPU to pick the process with shortest (least) estimated completion/run

time. In SJF, the process with the shortest estimated run time is scheduled first, followed

by the next shortest process, and so on.

Example 1: Three processes with process IDs P1, P2, P3 with estimated completion time

12, 6, 8 milliseconds respectively enters the ready queue together. Calculate the waiting

time and Turn Around Time (TAT) for each process and the Average waiting time and Turn

Around Time (Assuming there is no I/O waiting for the processes) in SJF algorithm.

Solution: The scheduler sorts the 'Ready' queue based on the shortest estimated

completion time and schedules the process with the least estimated completion time first

and the next least one as second, and so on. The order in which the processes are

scheduled for execution is represented as

P2 P3 P1

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 18

The waiting time for all processes are given as:

Waiting Time for P2 = 0ms (P2 starts executing first)

Waiting Time for P3 = 6ms (P3 starts executing after completing P2)

Waiting Time for PI = 14ms (P1 starts executing after completing P2 and P3)

Average waiting time = (Waiting time for all processes) / No. of Processes

= (0+6+14) / 3 = 6.66 milliseconds

Turn Around Time (TAT) = Time spent in Ready Queue (Waiting time) + Execution Time

Turn Around Time (TAT) for P2 = 10ms (0 + 6)

Turn Around Time (TAT) for P3 = 14ms (6 + 8)

Turn Around Time (TAT) for P1 = 24ms (14 + 10)

Average Turn Around Time (TAT) = TAT of all processes / No. of Processes

 = (10+14+24) / 3 = 16 milliseconds.

Example 2: Calculate the waiting time and Turn Around Time (TAT) for each process and

the Average waiting time and Turn Around Time for the above example if a new process P4

with estimated completion time 2ms enters the 'Ready' queue after 2ms of execution of P2.

Assume all the processes contain only CPU operation and no I/O operations are involved.

Solution: At the beginning, there are only three processes (P1, P2 and P3) available in the

'Ready' queue and the SJF scheduler picks up the process with the least execution

completion time (P2) for scheduling. The execution sequence is P2, P3, P1. Now process P4

with estimated execution completion time 2ms enters the 'Ready' queue after 2ms of start

of execution of P2. After 6ms of scheduling, P2 terminates and now the scheduler again

sorts the 'Ready' queue for process with least execution completion time. Since the

execution completion time for P4 (2ms) is less than that of P3 (8ms), which was supposed

to be run after the completion of P2 as per the 'Ready' queue available at the beginning of

execution scheduling, P4 is picked up for executing. Due to the arrival of the process P4

with execution time 2ms, the 'Ready' queue is re-sorted in the order P2, P4, P3, Pl. At the

beginning it was P2, P3, P1. The execution sequence now changes as per the following

diagram

P2 P4 P3 P1

The waiting time for all the processes are given as:

 Waiting time for P2 = 0ms (P2 starts executing first)

Waiting time for P4 = 4ms (P4 starts executing after completing P2. But P4 arrived after

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 19

2ms of execution of P2. Hence it’s waiting time = Execution start time - Arrival Time = 3)

Waiting time for P3 = 8ms (P3 starts executing after completing P2 and P4)

Waiting time for P1 = 16ms (P1 starts executing after completing P2, P4 and P3)

Average waiting time = (Waiting time for all processes) / No. of Processes

 = (0+4+8+16) / 4 = 7 milliseconds.

Turn Around Time (TAT) = Time spent in Ready Queue (Waiting time) + Execution Time

Turn Around Time (TAT) for P2 = 6ms (0 + 6)

Turn Around Time (TAT) for P4 = 6ms ((6-2) + 2)

Turn Around Time (TAT) for P3 = 16ms (8 + 8)

Turn Around Time (TAT) for P1 = 28ms (16 + 12)

Average Turn Around Time (TAT) = TAT of all processes / No. of Processes

 = (6+6+16+28) / 4 = 19 milliseconds.

4. Priority Based Scheduling: Priority based non-preemptive scheduling algorithm

ensures that a process with high priority is serviced at the earliest compared to other low

priority processes in the 'Ready' queue. While creating the process/task, the priority can be

assigned to it. The priority number associated with a task/process is the direct indication

of its priority. The non-preemptive priority based scheduler sorts the 'Ready' queue based

on priority and picks the process with the highest level of priority for execution.

Example 1: Three processes with process IDs P1, P2, P3 with estimated completion time

10, 5, 7 milliseconds and priorities 0, 3, 2 (0-highest priority, 3-lowest priority) respectively

enters the ready queue together. Calculate the waiting time and Turn Around Time (TAT)

for each process and the Average waiting time and Turn Around Time (Assuming there is no

I/O waiting for the processes) in priority based scheduling algorithm.

Solution: The scheduler sorts the 'Ready' queue based on the priority and schedules the

process with the highest priority (P1 with priority number 0) first and the next high priority

process (P3 with priority number 2) as second, and so on. The order in which the processes

are scheduled for execution is represented as

P1 P3 P2

The waiting time for all the processes are given as:

 Waiting time for P1 = 0ms (P1 starts executing first)

Waiting time for P3 = 10ms (P3 starts executing after completing PI)

Waiting time for P2 = 17ms (P2 starts executing after completing P1 and P3)

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 20

Average waiting time = (Waiting time for all processes) / No. of Processes

= (0+10+17)/3 = 9 milliseconds

Turn Around Time (TAT) = Time spent in Ready Queue (Waiting time) + Execution Time

Turn Around Time (TAT) for P1 = 10ms (0+10)

Turn Around Time (TAT) for P3 = 17ms (10+7)

Turn Around Time (TAT) for P2 = 22ms (17+5)

Average Turn Around Time (TAT) = TAT of all processes / No. of Processes

= (10+17+22)/3 = 16.33 milliseconds

Example 2: Calculate the waiting time and Turn Around Time (TAT) for each process and

the Average waiting time a Turn Around Time for the above example if a new process P4

with estimated completion time 6ms priority 1 enters the 'Ready' queue after 5ms of

execution of P1. Assume all the processes contain only CP operation and no I/O operations

are involved.

Solution: At the beginning, there are only three processes (P1, P2 and P3) available in the

'Ready' queue and the scheduler picks up the process with the highest priority (P1) for

scheduling. The execution sequence is P1, P3, P2. Now process P4 with estimate execution

completion time 6ms and priority 1 enters the 'Ready' queue after 5ms of execution of P1.

After 10ms of scheduling, Pl terminates and now the scheduler again sorts the 'Ready

queue for process with highest priority. Since the priority for P4 (priority 1) is higher than

that of P3 (priority 2 which was supposed to be run after the completion of P1 as per the

'Ready' queue available at the beginning of execution scheduling, P4 is picked up for

executing. Due to the arrival of the process P4 with priority the 'Ready' queue is resorted in

the order P1, P4, P3, P2. At the beginning it was P1, P3, P2. The execution sequence now

changes as per the following diagram

P1 P4 P3 P2

The waiting time for all the processes are given as:

Waiting time for P1 = 0ms (P1 starts executing first)

Waiting time for P4 = 5ms (P4 starts executing after completing P1. But P4 arrived after

5ms of execution of P1. Hence it’s waiting time=Execution start time - Arrival Time=10-5=5)

Waiting time for P3 = 16ms (P3 starts executing after completing PI and P4)

Waiting time for P2 = 23ms (P2 starts executing after completing P1, P4 and P3)

Average waiting time = (Waiting time for all processes) / No. of Processes

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 21

= (0+5+16+23) / 4 = 11 milliseconds

Turn Around Time (TAT) = Time spent in Ready Queue (Waiting time) + Execution Time

Turn Around Time (TAT) for P1 = 10ms (0+10)

Turn Around Time (TAT) for P4 = 11ms (5+6)

Turn Around Time (TAT) for P3 = 23ms (16+7)

Turn Around Time (TAT) for P2 = 28ms (23+5)

Average Turn Around Time (TAT) = TAT of all processes / No. of Processes

= (10+11+23+28)/ 4 = 18 milliseconds

Preemptive Scheduling

In preemptive scheduling, every task in the 'Ready’ queue gets a chance to execute. When

and how often each process gets a chance to execute is dependent on the type of

preemptive scheduling algorithm used for scheduling the processes. In this kind of

scheduling, the scheduler can preempt (stop temporarily) the currently executing

task/process and select another task from the 'Ready' queue for execution.

A task which is preempted by the scheduler is moved to the 'Ready queue. The act of

moving a 'Running process/task into the "Ready' queue by the scheduler, without the

processes requesting for it is known as 'Preemption’.

1. Preemptive SJF Scheduling/Shortest Remaining Time (SRT)

The preemptive SJF scheduling algorithm sorts the 'Ready’ queue when a new process

enters the 'Ready’ queue and checks whether the execution time of the new process is

shorter than the remaining of the total estimated time for the currently executing process.

If the execution time of the new process is less, the currently executing process is

preempted and the new process is scheduled for execution Preemptive SJF scheduling is

also known as Shortest Remaining Time (SRT) scheduling

Example 1: Three processes with process IDs P1, P2, P3 with estimated completion time

10, 5, 7 milliseconds respectively enters the ready queue together. A new process P4 with

estimated completion time 2ms enters the 'Ready' queue after 2ms. Calculate the waiting

time and Turn Around Time (TAT) for each process and the Average waiting time and Turn

Around Time in preemptive SJF/SRT based scheduling algorithm.

Solution: At the beginning, there are only three processes (P1, P2 and P3) available in the

'Ready' queue and the SRT scheduler picks up the process with the shortest remaining time

for execution completion for scheduling. Now process P4 with estimated execution

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 22

completion time 2ms enters the 'Ready' queue after 2ms of start of execution of P2. Since

the SRT algorithm is preemptive, the remaining time for completion of process P2 is

checked with the remaining time for completion of process P4. The remaining time for

completion of P2 is 3ms which is greater than that of the remaining time for completion of

the newly entered process P4 (2ms). Hence P2 is preempted and P4 is scheduled for

execution. P4 continues its execution to finish since there is no new process entered in the

'Ready' queue during its execution. After 2ms of scheduling P4 terminates and now the

scheduler again sorts the 'Ready' queue based on the remaining time for completion of the

processes present in the 'Ready' queue. The execution sequence now changes as per the

following diagram

P2 P4 P2 P3 P1

The waiting time for all the processes are given as:

Waiting time for P2 = 0ms + (4-2) ms = 2ms (P2 starts executing first and is interrupted by

P4 and has to wait till the completion of P4 and has to wait till the completion of P4)

Waiting time for P4 = 0ms (P4 starts executing after preempting P2)

Waiting time for P3 = 7ms (P3 starts executing after completing P4 and P2)

Waiting time for P1= 14ms (P1 starts executing after completing P2, P4 and P3)

Average waiting time = (Waiting time for all processes) / No. of Processes

= (0+2+7+14) / 4 = 5.75 milliseconds

Turn Around Time (TAT) = Time spent in Ready Queue (Waiting time) + Execution Time

Turn Around Time (TAT) for P2 = 7ms (2+5)

Turn Around Time (TAT) for P4 = 2ms (0+2)

Turn Around Time (TAT) for P3 = 14ms (7+7)

Turn Around Time (TAT) for P2 = 24ms (14+10)

Average Turn Around Time (TAT) = TAT of all processes / No. of Processes

= (7+2+14+24)/ 4 = 11.75 milliseconds

2. Round Robin (RR) Scheduling: In Round Robin scheduling, each process in the 'Ready'

queue is executed for a pre-defined time slot. The execution starts with picking up the first

process in the 'Ready' queue (see Fig.). It is executed for a pre-defined time and when the

pre-defined time elapses or the process completes (before the pre-defined time slice), the

next process in the ‘Ready' queue is selected for execution. This is repeated for all the

processes in the 'Ready' queue. Once each process in the 'Ready' queue is executed for the

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 23

pre-defined time period, the scheduler comes back and picks the first process in the

"Ready' queue again for execution. The sequence is repeated.

Example 1: Three processes with process IDs P1, P2, P3 with estimated completion time 6,

4, 2 milliseconds respectively enters the ready queue together in the order P1, P2, P3,

Calculate the waiting time and Turn Around Time (TAT) for each process and the Average

waiting time and Turn Around Time in RR algorithm with Time slice = 2 ms.

Solution: The scheduler sorts the 'Ready' queue and picks up the first process PI from the

‘Ready' queue and executes it for the time slice 2ms. When the time slice is expired, PI is

preempted and P2 is scheduled for execution. The Time slice expires after 2ms of execution

of P2. Now P2 is preempted and P3 is picked up for execution. P3 completes its execution

within the time slice and the scheduler picks P1 again for execution for the next time slice.

This procedure is repeated till all the processes are serviced. The order in which the

processes are scheduled for execution is represented as

P1 P2 P3 P1 P2 P1

The waiting time for all the processes are given as:

Waiting time for P1 = 0 + (6 - 2) + (10 - 8) = 6ms (P1 starts executing first and waits for two

time slices to get execution back and again 1 time slice for getting CPU time)

Waiting time for P2 = (2 - 0) + (8 - 4) = 6ms (P2 starts executing after P1 executes for 1 time

slice and waits for two time slices get the CPU time)

Waiting time for P3 = (4 – 0) = 4ms (P3 starts executing after completing the first time slices

for P1 and P2 and completes its execution in a single time slice)

Average waiting time = (Waiting time for all processes) / No. of Processes

= (6+6+4) / 3 = 5.33 milliseconds

Turn Around Time (TAT) = Time spent in Ready Queue (Waiting time) + Execution Time

Turn Around Time (TAT) for P1 = 12ms (6+6)

Turn Around Time (TAT) for P2 = 10ms (6+4)

Turn Around Time (TAT) for P3 = 6ms (4+2)

Average Turn Around Time (TAT) = TAT of all processes / No. of Processes

= (12+10+6)/ 3 = 9.33 milliseconds

3. Priority Based Scheduling: Priority based preemptive scheduling algorithm is same as

that of the non-preemptive priority based scheduling except for the switching of execution

between tasks. In preemptive scheduling, any high priority process entering the 'Ready'

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 24

queue is immediately scheduled for execution whereas in the non-preemptive scheduling

any high priority process entering the 'Ready’ queue is scheduled only after the currently

executing process completes its execution or only when it voluntarily relinquishes the CPU.

Example 1: Three processes with process IDs P1, P2, P3 with estimated completion time

10, 5, 7 milliseconds and priorities 1, 3, 2 (0-highest priority, 3 lowest priority) respectively

enters the ready queue together. A new process P4 with estimated completion time 6 ms

and priority O enters the 'Ready' queue after 5 ms of start of execution of Pl. Calculate the

waiting time and Turn Around Time (TAT) for each process and the Average waiting time

and Turn Around Time in preemptive priority based scheduling algorithm.

Solution: At the beginning, there are only three processes (P1, P2 and P3) available in the

'Ready' queue and the scheduler picks up the process with the highest priority (P1) for

scheduling. Now process P4 with estimated execution completion time 6 ms and priority 0

enters the 'Ready' queue after 5 ms of start of execution of P1. Since the scheduling

algorithm is preemptive, P1 is preempted by P4 and P4 runs to completion. After 6 ms of

scheduling, P4 terminates and now the scheduler again sorts the 'Ready' queue for process

with highest priority. Since the priority for P1 (priority 1), which is preempted by P4 is

higher than that of P3 (priority 2) and P2 ((priority 3), Pl is again picked up for execution by

the scheduler. The execution sequence is as per the following:

P1 P4 P1 P3 P2

The waiting time for all the processes are given as:

Waiting time for P1 = 0ms + (11-5) ms = 6ms (P21starts executing first and gets preempted

by P4 after 5ms and again gets CPU after completion of P4)

Waiting time for P4 = 0ms (P4 starts executing immediately after preempting P1)

Waiting time for P3 = 16ms (P3 starts executing after completing P1 and P4)

Waiting time for P2= 23ms (P2 starts executing after completing P1, P4 and P3)

Average waiting time = (Waiting time for all processes) / No. of Processes

= (6+0+16+23) / 4 = 111.25 milliseconds

Turn Around Time (TAT) = Time spent in Ready Queue (Waiting time) + Execution Time

Turn Around Time (TAT) for P1 = 16ms (6+10)

Turn Around Time (TAT) for P4 = 6ms (0+6)

Turn Around Time (TAT) for P3 = 23ms (16+7)

Turn Around Time (TAT) for P2 = 28ms (23+5)

[INTRODUCTION TO EMBEDDED SYSTEMS-BETCK205J] saleem_ece@pace.edu.in

MOHAMMED SALEEM | Asst. Prof., Dept. of E & C, PACE 25

Average Turn Around Time (TAT) = TAT of all processes / No. of Processes

= (16+6+23+28)/ 4 = 18.25 milliseconds

