
saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

1 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

MODULE – 3

Gate-Level Modeling: Modeling using basic Verilog gate primitives, description of and/or and

buf/not type gates, rise, fall and turn-off delays, min, max, and typical delays.

Dataflow Modeling: Continuous assignments, delay specification, expressions, operators,

operands, operator types.

3.1 Gate Types

A logic circuit can be designed by use of logic gates. Verilog supports basic logic gates as

predefined primitives. These primitives are instantiated like modules except that they are

predefined in Verilog and do not need a module definition. All logic circuits can be designed

by using basic gates. There are two classes of basic gates: and/or gates and buf/not gates.

3.1.1 And /Or Gates

And/or gates have one scalar output and multiple scalar inputs. The first terminal in the list

of gate terminals is an output and the other terminals are inputs. The output of a gate is

evaluated as soon as one of the inputs changes. The and/or gates available in Verilog are:

and, or, xor, nand, nor, xnor.

The corresponding logic symbols for these gates are shown in Figure 3.1. Consider the

gates with two inputs. The output terminal is denoted by out. Input terminals are denoted

by i1 and i2.

Figure 3.1: Basic gates

These gates are instantiated to build logic circuits in Verilog. Examples of gate

instantiations are shown below. In Example 3.1, for all instances, OUT is connected to the

output out, and IN1 and IN2 are connected to the two inputs i1 and i2 of the gate primitives.

Note that the instance name does not need to be specified for primitives. This lets the designer

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

2 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

instantiate hundreds of gates without giving them a name. More than two inputs can be

specified in a gate instantiation. Gates with more than two inputs are instantiated by

simply adding more input ports in the gate instantiation. Verilog automatically

instantiates the appropriate gate.

Example 3.1: Gate Instantiation of And/Or Gates

wire OUT, IN1, IN2;

// basic gate instantiations.

and a1(OUT, IN1, IN2);

nand na1(OUT, IN1, IN2);

or or1(OUT, IN1, IN2);

nor nor1(OUT, IN1, IN2);

xor x1(OUT, IN1, IN2);

xnor nx1(OUT, IN1, IN2);

// More than two inputs;

nand na1_3inp(OUT, IN1, IN2, IN3);

// gate instantiation without instance name

and (OUT, IN1, IN2); // legal gate instantiation

Table 3.1: Truth tables for And/0r gates.

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

3 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

The truth tables for these gates define how outputs for the gates are computed from

the inputs. Truth tables are defined assuming two inputs. The truth tables for these gates

are shown in Table 3.1. Outputs of gates with more than two inputs are computed by

applying the truth table iteratively.

3.1.2 Buf/Not Gates

Buf/not gates have one scalar input and one or more scalar outputs. The last terminal in

the port list is connected to the input. Other terminals are connected to the outputs. We will

discuss gates that have one input and one output. Two basic buf/not gate primitives are

provided in Verilog: buf not

The symbols for these logic gates are shown in Figure 3.2.

Figure 3.2: Buf and not gates.

These gates are instantiated in Verilog as shown Example 3.2. Notice that these

gates can have multiple outputs but exactly one input, which is the last terminal in the

port list.

Example 3.2: Gate Instantiations of Buf/Not Gates

// basic gate instantiations. buf b1(OUT1, IN);

not n1(OUT1, IN);

// More than two outputs

buf b1_2out(OUT1, OUT2, IN);

// gate instantiation without instance name not (OUT1, IN); // legal gate instantiation

Truth tables for gates with one input and one output are shown in Table 3.2.

Table 3.2: Truth tables for buf/not gates.

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

4 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

Bufif/notif

Gates with an additional control signal on buf and not gates are also available.

bufif1 notif1 bufif0 notif0

These gates propagate only if their control signal is asserted. They propagate z if their control

signal is deasserted. Symbols for bufif/notif are shown in Figure 3.3.

Figure 3.3: Gates bufif and notif

The truth tables for these gates are shown in Table 3.3.

Table 3.3: Truth tables for bufif / notif gates

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

5 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

These gates are used when a signal is to be driven only when the control signal is asserted.

Such a situation is applicable when multiple drivers drive the signal. These drivers are

designed to drive the signal on mutually exclusive control signals. Example 3-3 shows

examples of instantiation of bufif and notif gates.

Example 3.3: Gate instantiation of bufif / notif gates

//Instantiation of bufif gates.

 bufif1 b1 (out, in, ctrl);

 bufif0 b0 (out, in, ctrl);

//Instantiation of notif gates

 notif1 n1 (out, in, ctrl);

 notif0 n0 (out, in, ctrl);

3.1.3 Array of Instances

There are many situations when repetitive instances are required. These instances differ

from each other only by the index of the vector to which they are connected. To simplify

specification of such instances, Verilog HDL allows an array of primitive instances to be

defined. Example3.4 shows an example of an array of instances.

Example 3.4: Simple Array of Primitive Instances

wire [7:0] OUT, IN1, IN2;

// basic gate instantiations. nand n_gate[7:0](OUT, IN1, IN2);

// This is equivalent to the following 8 instantiations

nand n_gate0(OUT[0], IN1[0], IN2[0]);

nand n_gate1(OUT[1], IN1[1], IN2[1]);

nand n_gate2(OUT[2], IN1[2], IN2[2]);

nand n_gate3(OUT[3], IN1[3], IN2[3]);

nand n_gate4(OUT[4], IN1[4], IN2[4]);

nand n_gate4(OUT[4], IN1[4], IN2[4]);

nand n_gate4(OUT[5], IN1[5], IN2[5]);

nand n_gate4(OUT[6], IN1[6], IN2[6]);

nand n_gate4(OUT[7], IN1[7], IN2[7]);

3.1.4 Examples

Gate-level multiplexer: Design of 4-to-1 multiplexer with 2 select signals. The I/O diagram

and the truth table for the multiplexer are shown in Figure 3.4.

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

6 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

Figure 3.4: 4 to 1 multiplexer

Implement the logic for the multiplexer using basic logic gates. The logic diagram for the

multiplexer is shown in Figure 3.5.

Figure 3.5: Logic diagram for multiplexer

The Verilog description for the multiplexer is shown in Example 3-5. Two intermediate nets,

s0n and s1n, are created; they are complements of input signals s1 and s0. Internal nets

y0, y1, y2, y3 are also required.

Example 3.5: Verilog description for multiplexer

// Module 4-to-1 multiplexer. Port list is taken exactly from the I/O diagram.

 module mux4_to_1 (out, i0, i1, i2, i3, s1, s0);

 // Port declarations from the I/O diagram output out;

 input i0, i1, i2, i3; input s1, s0;

// Internal wire declarations

 wire s1n, s0n;

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

7 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

 wire y0, y1, y2, y3;

 // Gate instantiations. Create s1n and s0n signals.

 not (s1n, s1);

 not (s0n, s0);

// 3-input and gates instantiated

 and (y0, i0, s1n, s0n);

 and (y1, i1, s1n, s0);

 and (y2, i2, s1, s0n);

 and (y3, i3, s1, s0);

 // 4-input or gate instantiated

 or (out, y0, y1, y2, y3);

 endmodule

This multiplexer can be tested with the stimulus shown in Example 3.6.

Example 3.6: Stimulus for multiplexer

// Define the stimulus module (no ports)

 module stimulus;

//Declare variables to be connected to i/p. Declare output wire.

 reg IN0, IN1, IN2, IN3;

 reg S1, S0;

wire OUTPUT;

// Instantiate the multiplexer

 mux4_to_1 mymux(OUTPUT, IN0, IN1, IN2, IN3, S1, S0);

// Stimulate the inputs. Define the stimulus module (no ports)

 initial

begin

// set input lines

 IN0 = 1; IN1 = 0; IN2 = 1; IN3 = 0;

 #1 $display("IN0= %b, IN1= %b, IN2= %b, IN3= %b\n", IN0,IN1,IN2,IN3);

// choose IN0

 S1 = 0; S0 = 0;

 #1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT);

// choose IN1

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

8 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

 S1 = 0; S0 = 1;

 #1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT);

// choose IN2

 S1 = 1; S0 = 0;

 #1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT);

 // choose IN3 S1 = 1; S0 = 1;

 #1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT);

 end

 endmodule

4-bit Ripple Carry Full Adder

Design of a 4-bit full adder: The basic building block is a 1-bit full adder. The logic diagram

for a 1-bit full adder is shown in Figure 3.6.

Figure 5.6: 1-bit full adder

This logic diagram for the 1-bit full adder is converted to a Verilog description, shown

in Example 3.7.

Example 3.7: Verilog Description for 1-bit Full Adder

// Define a 1-bit full adder

 module fulladd(sum, c_out, a, b, c_in);

 // I/O port declarations

 output sum, c_out;

 input a, b, c_in;

// Internal nets wire s1, c1, c2;

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

9 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

// Instantiate logic gate primitives

 xor (s1, a, b);

 and (c1, a, b);

 xor (sum, s1, c_in);

 and (c2, s1, c_in);

 xor (c_out, c2, c1);

 endmodule

A 4-bit ripple carry full adder can be constructed from four 1-bit full adders, as shown

in Figure 3.7. Notice that fa0, fa1, fa2, and fa3 are instances of the module fulladd (1-bit full

adder).

Figure 3.7: 4-bit ripple carry full adder

This structure can be translated to Verilog as shown in Example 3-8.

Example 3.8: Verilog description for 4-bit ripple carry full adder.

// Define a 4-bit full adder

 module fulladd4(sum, c_out, a, b, c_in);

 // I/O port declarations

 output [3:0] sum;

 output c_out;

 input[3:0] a, b;

 input c_in;

 // Internal nets wire c1, c2, c3;

// Instantiate four 1-bit full adders.

 fulladd fa0(sum[0], c1, a[0], b[0], c_in);

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

10 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

 fulladd fa1(sum[1], c2, a[1], b[1], c1);

 fulladd fa2(sum[2], c3, a[2], b[2], c2);

 fulladd fa3(sum[3], c_out, a[3], b[3], c3);

endmodule

Finally, the design must be checked by applying stimulus, as shown in Example 3.9.

Example 3.9: Stimulus for 4-bit ripple carry full adder

// Define the stimulus (top level module)

 module stimulus;

// Set up variables

 reg [3:0] A, B;

 reg C_IN;

 wire [3:0] SUM;

 wire C_OUT;

// Instantiate the 4-bit full adder. call it FA1_4

 fulladd4 FA1_4(SUM, C_OUT, A, B, C_IN);

// Set up the monitoring for the signal values

 initial

 begin

 $monitor($time," A= %b, B=%b, C_IN= %b, --- C_OUT= %b, SUM= %b\n", A, B, C_IN,

 _OUT, SUM);

 end

// Stimulate inputs initial

 begin

 A = 4'd0; B = 4'd0; C_IN = 1'b0;

 #5 A = 4'd3; B = 4'd4;

 #5 A = 4'd2; B = 4'd5;

 #5 A = 4'd9; B = 4'd9;

 #5 A = 4'd10; B = 4'd15;

 #5 A = 4'd10; B = 4'd5;

 end

 endmodule

The output of the simulation is shown below:

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

11 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

0 A= 0000, B=0000, C_IN= 0, --- C_OUT= 0, SUM= 0000

5 A= 0011, B=0100, C_IN= 0, --- C_OUT= 0, SUM= 0111

10 A= 0010, B=0101, C_IN= 0, --- C_OUT= 0, SUM= 0111

15 A= 1001, B=1001, C_IN= 0, --- C_OUT= 1, SUM= 0010

20 A= 1010, B=1111, C_IN= 0, --- C_OUT= 1, SUM= 1001

25 A= 1010, B=0101, C_IN= 0, --- C_OUT= 1, SUM= 0000

3.2 Gate Delays

Until now, circuits are described without any delays (i.e., zero delay). In real circuits, logic

gates have delays associated with them. Gate delays allow the Verilog user to specify delays

through the logic circuits. Pin-to-pin delays can also be specified in Verilog.

3.2.1 Rise, Fall, and Turn-off Delays

There are three types of delays from the inputs to the output of a primitive gate.

Rise delay

The rise delay is associated with a gate output transition to a 1 from another value.

Fall delay

The fall delay is associated with a gate output transition to a 0 from another value.

Turn-off delay

The turn-off delay is associated with a gate output transition to the high impedance value

(z) from another value. If the value changes to x, the minimum of the three delays is

considered.

Three types of delay specifications are allowed. If only one delay is specified, this value

is used for all transitions. If two delays are specified, they refer to the rise and fall delay

values. The turn-off delay is the minimum of the two delays. If all three delays are specified,

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

12 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

they refer to rise, fall, and turn-off delay values. If no delays are specified, the default value

is zero. Examples of delay specification are shown in Example 3.10.

Example 3.10: Types of Delay Specification:

 // Delay of delay_time for all transitions

 and #(delay_time) a1(out, i1, i2);

// Rise and Fall Delay Specification.

 and #(rise_val, fall_val) a2(out, i1, i2);

 // Rise, Fall, and Turn-off Delay Specification

 bufif0 #(rise_val, fall_val, turnoff_val) b1 (out, in, control);

Examples of delay specification:

 and #(5) a1(out, i1, i2); //Delay of 5 for all transitions

and #(4,6) a2(out, i1, i2); // Rise = 4, Fall = 6

bufif0 #(3,4,5) b1 (out, in, control); // Rise = 3, Fall = 4, Turn-off= 5

Min/Typ/Max Values

Verilog provides an additional level of control for each type of delay mentioned above. For

each type of delay-rise, fall, and turn-off-three values, min, typ, and max, can be specified.

Any one value can be chosen at the start of the simulation. Min/typ/max values are used to

model devices whose delays vary within a minimum and maximum range because of the IC

fabrication process variations.

Min value

The min value is the minimum delay value that the designer expects the gate to have.

Typ val

The typ value is the typical delay value that the designer expects the gate to have.

Max value

The max value is the maximum delay value that the designer expects the gate to have.

Min, typ, or max values can be chosen at Verilog run time. Method of choosing a

min/typ/max value may vary for different simulators or operating systems. (For Verilog- XL,

the values are chosen by specifying options +maxdelays, +typdelays, and +mindelays at run

time. If no option is specified, the typical delay value is the default). This allows the designers

the flexibility of building three delay values for each transition into their design. The designer

can experiment with delay values without modifying the design.

Examples of min, typ, and max value specification for Verilog-XL are shown in Example3-11.

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

13 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

Example 3.11: Min, typ, and max delay values

// One delay

 // if +mindelays, delay= 4

 // if +typdelays, delay= 5

 // if +maxdelays, delay= 6

 and #(4:5:6) a1(out, i1, i2);

// Two delays

 // if +mindelays, rise= 3, fall= 5, turn-off = min(3,5)

 // if +typdelays, rise= 4, fall= 6, turn-off = min(4,6)

 // if +maxdelays, rise= 5, fall= 7, turn-off = min(5,7)

 and #(3:4:5, 5:6:7) a2(out, i1, i2);

 // Three delays

// if +mindelays, rise= 3, fall= 5, turn-off = 2

 // if +typdelays, rise= 4, fall= 6, turn-off = 3

 // if +maxdelays, rise= 5, fall= 7, turn-off = 4

 and #(3:4:5, 5:6:7, 2:3:4) a3(out, i1, i2);

3.2.3 Delay Example

Let us consider a simple example to illustrate the use of gate delays to model timing in the

logic circuits. A simple module called D implements the following logic equations:

out = (a b) + c

The gate-level implementation is shown in Module D (Figure 3.8). The module contains two

gates with delays of 5 and 4 time units.

Figure 3.8: Module D

The module D is defined in Verilog as shown in Example 3.12.

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

14 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

Example 3.12: Verilog definition for module D with delay

// Define a simple combination module called D

 module D (out, a, b, c);

// I/O port declarations

 output out;

 input a,b,c;

 // Internal nets

 wire e;

// Instantiate primitive gates to build the circuit

 and #(5) a1(e, a, b); //Delay of 5 on gate a1

 or #(4) o1(out, e,c); //Delay of 4 on gate o1

 endmodule

This module is tested by the stimulus file shown in Example 3.13.

Example 3.13: Stimulus for Module D with Delay

// Stimulus (top-level module)

 module stimulus;

// Declare variables reg A, B, C;

 wire OUT;

 // Instantiate the module D

 D d1(OUT, A, B, C);

// Stimulate the inputs. Finish the simulation at 40 time units.

 initial

 begin

 A= 1'b0; B= 1'b0; C= 1'b0;

 #10 A= 1'b1; B= 1'b1; C= 1'b1;

 #10 A= 1'b1; B= 1'b0; C= 1'b0;

 #20 $finish;

 end

 endmodule

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

15 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

Figure 3.9: Waveforms for delay simulation.

The waveforms from the simulation are shown in Figure 3.9 to illustrate the effect of

specifying delays on gates. The waveforms are not drawn to scale. However, simulation time

at each transition is specified below the transition.

1. The outputs E and OUT are initially unknown.

2. At time 10, after A, B, and C all transition to 1, OUT transitions to 1 after a delay of 4 time

units and E changes value to 1 after 5 time units.

 3. At time 20, B and C transition to 0. E changes value to 0 after 5 time units, and OUT

transitions to 0, 4 time units after E changes.

3.4 Dataflow Modeling

For small circuits, the gate-level modeling approach works very well because the number of

gates is limited and the designer can instantiate and connects every gate individually. Also,

gate-level modeling is very intuitive to a designer with a basic knowledge of digital logic

design. However, in complex designs the number of gates is very large. Thus, designers can

design more effectively if they concentrate on implementing the function at a level of

abstraction higher than gate level. Dataflow modeling provides a powerful way to implement

a design. Verilog allows a circuit to be designed in terms of the data flow between registers

and how a design processes data rather than instantiation of individual gates.

3.4.1 Continuous Assignments

A continuous assignment is the most basic statement in dataflow modeling, used to drive a

value onto a net. This assignment replaces gates in the description of the circuit and describes

the circuit at a higher level of abstraction. The assignment statement starts with the keyword

assign. The syntax of an assign statement is as follows.

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

16 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

continuous_assign ::= assign [drive_strength] [delay3] list_of_net_assignments ;

list_of_net_assignments ::= net_assignment { , net_assignment }

net_assignment ::= net_lvalue = expression

The default value for drive strength is strong1 and strong0. The delay value is also

optional and can be used to specify delay on the assign statement. This is like specifying

delays for gates. Continuous assignments have the following characteristics:

1. The left hand side of an assignment must always be a scalar or vector net or a

concatenation of scalar and vector nets. It cannot be a scalar or vector register.

2. Continuous assignments are always active. The assignment expression is evaluated as

soon as one of the right- hand-side operands changes and the value is assigned to the left-

hand-side net.

3. The operands on the right-hand side can be registers or nets or function calls. Registers

or nets can be scalars or vectors.

4. Delay values can be specified for assignments in terms of time units. Delay values are used

to control the time when a net is assigned the evaluated value. This feature is similar to

specifying delays for gates. It is very useful in modeling timing behavior in real circuits.

Example 3.14: Examples of Continuous Assignment

// Continuous assign. out is a net. i1 and i2 are nets.

 assign out = i1 & i2;

// Continuous assign for vector nets. addr is a 16-bit vector ne addr1 and addr2 are 16-bit

//vector registers.

 assign addr[15:0] = addr1_bits[15:0] ^ addr2_bits[15:0];

// Concatenation. Left-hand side is a concatenation of a scalar net and a vector net.

 assign {c_out, sum[3:0]} = a[3:0] + b[3:0] + c_in;

3.14.2 Implicit Continuous Assignment

Instead of declaring a net and then writing a continuous assignment on the net, Verilog

provides a shortcut by which a continuous assignment can be placed on a net when it is

declared. There can be only one implicit declaration assignment per net because a net is

declared only once. In the example below, an implicit continuous assignment is contrasted

with a regular continuous assignment.

//Regular continuous assignment

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

17 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

wire out;

 assign out = in1 & in2;

 //Same effect is achieved by an implicit continuous assignment

 wire out = in1 & in2;

3.14.3 Implicit Net Declaration

If a signal name is used to the left of the continuous assignment, an implicit net declaration

will be inferred for that signal name. If the net is connected to a module port, the width of

the inferred net is equal to the width of the module port.

// Continuous assign. out is a net.

wire i1, i2;

assign out = i1 & i2; //Note that out was not declared as a wire but an implicit wire

 // declaration for out is done by the simulator

3.5 Delays

Delay values control the time between the change in a right-hand-side operand and when the

new value is assigned to the left-hand side. Three ways of specifying delays in continuous

assignment statements are regular assignment delay, implicit continuous assignment delay,

and net declaration delay.

3.5.1 Regular Assignment Delay

The first method is to assign a delay value in a continuous assignment statement. The delay

value is specified after the keyword assign. Any change in values of in1 or in2 will result in a

delay of 10 time units before re-computation of the expression in1 & in2, and the result will

be assigned to out. If in1 or in2 changes value again before 10 time units when the result

propagates to out, the values of in1 and in2 at the time of re-computation are considered.

This property is called inertial delay. An input pulse that is shorter than the delay of the

assignment statement does not propagate to the output.

assign #10 out = in1 & in2; // Delay in a continuous assign

3.5.2 Implicit Continuous Assignment Delay

An equivalent method is to use an implicit continuous assignment to specify both a delay

and an assignment on the net.

//implicit continuous assignment delay

 wire #10 out = in1 & in2; //

same as

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

18 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

 wire out;

 assign #10 out = in1 & in2;

The declaration above has the same effect as defining a wire out and declaring a continuous

assignment on out.

3.5.3 Net Declaration Delay

A delay can be specified on a net when it is declared without putting a continuous

assignment on the net. If a delay is specified on a net out, then any value change applied to

the net out is delayed accordingly. Net declaration delays can also be used in gate-level

modeling.

//Net Delays

 wire # 10 out;

 assign out = in1 & in2;

//The above statement has the same effect as the following:

 wire out;

 assign #10 out = in1 & in2;

3.6 Expressions, Operators, and Operands

Dataflow modeling describes the design in terms of expressions instead of primitive gates.

Expressions, operators, and operands form the basis of dataflow modeling.

3.6.1 Expressions

Expressions are constructs that combine operators and operands to produce a result.

// Examples of expressions. Combines operands and operators

a ^ b

 addr1[20:17] + addr2[20:17]

 in1 | in2

3.6.2 Operands

Operands can be any one of the data types defined, Data Types. Some constructs will take only

certain types of operands. Operands can be constants, integers, real numbers, nets, registers,

times, bit-select (one bit of vector net or a vector register), part-select (selected bits of the vector

net or register vector), and memories or function calls.

integer count, final_count;

 final_count = count + 1;//count is an integer operand

 real a, b, c;

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

19 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

 c = a - b; //a and b are real operands

 reg [15:0] reg1, reg2;

 reg [3:0] reg_out;

 reg_out = reg1[3:0] ^ reg2[3:0]; //reg1[3:0] and reg2[3:0] are part-select reg operands

 reg ret_value;

 ret_value = calculate_parity(A, B); / /calculate_parity is a function type operand

3.6.3 Operators

Operators act on the operands to produce desired results. Verilog provides various types of

operators.

d1 && d2 // && is an operator on operands d1 and d2.

!a[0] // ! is an operator on operand a[0]

B >> 1 // >> is an operator on operands B and 1

3.7 Operator Types

Verilog provides many different operator types. Operators can be arithmetic, logical,

relational, equality, bitwise, reduction, shift, concatenation, or conditional. Some of these

operators are similar to the operators used in the C programming language. Each operator

type is denoted by a symbol. Table shows the complete listing of operator symbols classified

by category.

Table 3.4: Operator types and symbols

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

20 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

21 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

3.7.1 Arithmetic Operators

There are two types of arithmetic operators: binary and unary

Binary operators

Binary arithmetic operators are multiply (*), divide (/), add (+), subtract (-), power (**) and

modulus (%). Binary operators take two operands.

Examples:

A = 4'b00111; B = 4'b01001 // A and B are register vectors

D = 6, E = 4, F = 2// D and E are integers

A*B // Multiply A and B. Evaluates to 4’b1100

D/E // Divide D by R. Evaluates to 1. Truncates any fractional part

A+B// Add A and B. Evaluates to 4’b0111

B-A // Subtract A from B. Evaluates to 4’b0001

F = E ** F //E to the power F, yields 16

If any operand value x, then the result of the entire expression is x. This seems intuitive

because if an operand value is not known precisely, the result should be an unknown.

Example:

in1 = 4'b101x;

in2 = 4'b1010;

sum = in1 + in2; // sum will be evaluated to the value 4’bx

Modulus operators produce the remainder from the division of two numbers. They

operate similarly to the modulus operator in the C programming language.

Examples:

13 % 3// Evaluates to 1

16 % 4 Evaluates to 0

-7 % 2 Evaluates to -1, takes sign of the first operand

7 % -2 // Evaluates to 1, takes sign of the first operand

Unary operators

The operators + and - can also work as unary operators. They are used to specify the positive

or negative sign of the operand. Unary + or - operator have higher precedence than the binary

+ or - operators.

Examples:

-4/ Negative 4

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

22 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

+5 // Positive 5

Negative numbers are represented as 2's complement internally in Verilog. It is

advisable to use negative numbers only of the type integer or real in expressions. Designers

should avoid negative numbers of the type <sss>'<base> <nnn> in expressions because they

are converted to unsigned 2's complement numbers and hence yield unexpected results.

Examples:

//Advisable to use integer or real numbers

-10 / 5// Evaluates to 2

//Do not use numbers of type <sss> '<base> <nnn>

-'d10 / 5 // Is equivalent (2's complement of 10)/5 - (232 - 10)/5 // where 32 is the default

//machine word width. This evaluates to an incorrect and unexpected result.

3.7.2 Logical Operators

Logical operators are logical and (&&), logical-or (||) and logical-not (!). Operators && and ||

are binary operators. Operator ! is a unary operator. Logical operators follow these conditions:

1. Logical operators always evaluate to 1-bit value, 0 (false), 1 (true), or x(ambiguous).

2. If an operand is not equal to zero, it is equivalent to a logical 1 (true condition). If it is equal

to zero, it is equivalent to a logical 0 (false condition).If any operand bit is x or z, it is

equivalent to x (ambiguous condition) and as is normally treated by simulators as a false

condition.

3. Logical operators take variables or expressions as operands.

Use of parentheses to group logical operation is highly recommended to improve

readability. Also, the user does not have to remember the precedence of operators.

Examples:

1) A = 3, B=0;

A && B / Evaluates to 0. Equivalent to (logical -1 && logical-0)

A || B // Evaluates to 1. Equivalent to (logical -1 || logical-0)

!A // Evaluates to 0. Equivalent to not (logical -1)

!B // Evaluates to 1. Equivalent to not (logical -0)

2) A = 2’b0x, B = 2'b10;

A && B / Evaluates to x. Equivalent to (x && logical-1)

3) (a==2) && (b==3) // Evaluates to 1 if both a==2 and b==3 are true.

// Evaluates to 0 if either is false.

3.7.3 Relational Operators

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

23 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

Relational operators are greater than (>), less than (<), greater than or equal (>=), and less

than or equal to (<=). If relational operators are used in an expression, the expression returns

a logical value of 1 if the expression is true and 0 if the expression is false. If there are any

unknown or z bits in the operands, the espresso takes a value x. These operators function

exactly as the corresponding operators in the C programming language.

Examples:

//A=4, B=3

// X = 4’b1010, Y = 4’b1101, Z = 4’b1xxx;

A <= B // Evaluates to a logical 0

A > B // Evaluate to a logical 1

Y >= X // Evaluates to a logical 1

Y < Z // Evaluates to an x

3.7.4 Equality Operators

Equality operators are logical equality (==), logical inequality (!=), case equality (===) and raw

inequality (!==). When used in an expression, equality operators return logical value 1 if true,

0 if false. These operators compare the two operands bit by bit, with zero filling if the operands

are of unequal length. Table 3.5 lists the operators.

Table 3.5

Expression Description Possible logical value

a == b a equal to b, result unknown if x or z in a or b 0, 1, x

a != b a not equal to b, result unknown if x or z in a or b 0, 1, x

a === b a equal to b, including x and z 0, 1

a !== b a not equal to b, including x and z 0, 1

It is important to note the difference between the logical equality operators (==, !=) and case

equality operators (===, !==). The logical equality operators (==, !=) will yield an x if either

operand has x or z in its bits. However, the case equality operators (===, !==) compare both

operands bit by bit and compare all bits, including x and z. The result is 1 if the operands

match exactly, including x and z bits. The result is 0 if the operands do not match exactly.

Case equality operators never result in an x.

Examples:

// A = 4, B = 3

// X=4'b1010, Y = 4'bl101

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

24 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

// Z = 4 b1xxx, M = 4'blxxz, N= 4'blxxx

A == B // Results in logical 0

X != Y // Results in logical 1

X == Z // Results in x

Z === M // Results in logical 1 (all bits match, including x and z)

Z === N // Results in logical 0 (least significant bit does not match)

M !== N // Results in logical 1

3.7.5 Bitwise Operators

Bitwise operators are negation (~), and (&), or (|), xor (^), xnor (^~, ~^), Bitwise operators

perform a bit-by-bit operation on two operands. They take each bit in one operand and

perform the operation with the corresponding bit in the other operand. If one operand is

shorter than the other, it will be bit-extended with zeros to match the length of the longer

operand. Logic tables for the bit-by-bit computation are shown in Table 3.6. A z is treated as

an x in a bitwise operation. The exception is the unary negation operator (-), which takes only

one operand and operates on the bits of the single operand.

Table 3.6: Truth Tables for Bitwise Operator

Examples:

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

25 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

// X = 4’b1010, Y = 4’b1101

// Z= 4’b10x1

~X // Negation. Result is 4’b0101

 X&Y // Bitwise and. Result is 4'b1000

X | Y // Bitwise or Result is 4'b1111

X ^ Y // Bitwise xor. Result is 4'b0111

X ^~ Y // Bitwise xnor. Result is 4'b1000

X & Z // Result is 4’b10x0

It is important to distinguish bitwise operators ~, &, and | from logical operators !, &&,

||. Logical operators always yield s logical value 0, 1, x, whereas bitwise operators yield a

bit-by-bit value. Logical operators perform a logical operation, not a bit by bit operation.

// X = 4b1010, Y = 4’b0000;

X | Y / bitwise operation. Result is 4’b1010

X || Y / logical operation. Equivalent to 1 ||0. Result is 1.

3.7.6 Reduction Operators

Reduction operators are and (&), nand (~&), or (|), nor(~|), xor(^), and xnor(~^, ̂ ~). Reduction

operators take only one operand. Reduction operators perform a bitwise operation on a single

vector operand and yield a 1-bit result. The difference is that bitwise operations are on bits

from two different operands, whereas reduction operations are on the bits of the same

operand. Reduction Operators work bit by bit from right to left. Reduction nand, reduction

nor, and reduction xnor are computed by inverting the result of the reduction and, reduction

or, and reduction xor, respectively.

Example:

// x = 4'b1010

&X //Equivalent to 1& 0 & 1 & 0. Results in 1’b0

|X//Equivalent to 1| 0 | 1 | 0. Results in 1'b1

^X //Equivalent to 1 ^ 0 ^ 1 ^0. Result in 1’b0

//A reduction xor or xnor can be used for even or odd parity generation of a vector.

The use of a similar set of symbols for logical (!, &&, ||), bitwise (~, &, |, ^), and

reduction operators (&, |, ̂) is somewhat confusing initially. The difference lies in the number

of operands each operator takes and also the value of results computed.

3.7.7 Shift Operators

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

26 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

Shift operators are right shift (>>), left shift (<<), arithmetic right shift (>>>) and arithmetic

left shift (<<<). Regular shift operators shift a vector operand to the right or the left by a

specified number of bits. The operands are the vector and the number of bits to shift.

When the bits are shifted, the vacant bit positions are filled with zeros. Shift operations

does not wrap around. Arithmetic shift operators use the context of the expression to

determine the value with which to fill the vacated bits.

Example:

// x = 4’b1100

Y = X >> 1: Y is 4'b0110. Shift right 1 bit. 0 filled in MSB position

Y = X << 1; //Y is 4 b1000. Shift left 1 bit. 0 filled in LSB position

Y = X << 2; //Y is 4 b0000. Shift Left 2 bits.

integer a, b, c//Signed data types

a = 0;

b = -10; // 00111...10110 binary

c = a+ (b>>> 3): //Results in -2 decimal, due to arithmetic shift.

Shift operators are useful because they allow the designer to model shift operations, shift-

and-add algorithms for multiplication, and other useful operations.

3.7.8 Concatenation Operator

The concatenation operator ({ , }) provides a mechanism to append multiple operands. The

operands must be sized. Unsized operands are not allowed because the size of each operand

must be known for computation of the size of the result.

Concatenations are expressed as operands within braces, with commas separating the

operands. Operands can be scalar nets or registers, vector nets or registers, bit-select, part-

select, or sized constants.

Example:

// A = 1'b1, B = 2'b00, C = 2'b10, D = 3'bl10;

Y = {B, C} // Result Y is 4'b0010

Y = {A, B, C, D, 3'b001} // Result Y is 11’b10010110001

Y = {A, B[0], C[1]) // Result Y is 3’b101

3.7.9 Replication Operator

Repetitive concatenation of the same number can be expressed by using a replication

constant. A replication constant specifies how many times to replicate the number inside the

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

27 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

brackets ({ })

Example:

reg A;

reg [1:0] B, C;

reg [2:0] D;

A= 1’b1, B = 2’b00, C= 2’b10, D = 3'b110;

Y= {4 {A} } // Result Y is 4’b1111

Y = {4{A}, 2(B} } Result is 8’b11110000

Y = {4{A}, 2{B}, C} // Result Y is 10’b1111000010

3.7.10 Conditional Operator:

The conditional operator (?:) takes three operands.

Usage: condition_expression ? true_expression : false_expression

The condition expression (condition_expression) is first evaluated. If the result is true (logical

1), then the true_expression is evaluated. If the result is false (logical 0), then the

false_expression is evaluated. If the result is x (ambiguous), then both true_expression and

false_expression are evaluated and their results are compared, bit by bit, to return for each

bit position an x if the bits are different and the value of the bits if they are the same.

The action of a conditional operator is similar to a multiplexer. Alternately, it can be

compared to the if-else expression.

Conditional operators are frequently used in dataflow modeling to model conditional

assignments. The conditional expression acts as a switching control.

// model functionality of a tristate buffer

assign addr_bus = drive_enable ? addr_out : 36'bz;

//model functionality of a 2-to-1 mux

assign out = control ? in1 : in0;

Conditional operations can be nested. Each true_expression or false_expression can

itself be a conditional operation. In the example that follows, convince yourself that (A==3)

and control are the two select signals of 4-to-1 multiplexer with n, m, y, x as the inputs and

out as the output signal.

assign out = (A == 3) ? (control ? x : y) : (control ? m : n);

3.7.11 Operator Precedence

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

28 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

Having discussed the operators, it is now important to discuss operator precedence. If no

parentheses are used to separate parts of expressions, Verilog enforces the following

precedence. Operators listed in Table 3.7 are in order from highest precedence to lowest

precedence. It is recommended that parentheses be used to separate expressions except in

the case of unary operators or when there is no ambiguity.

Table 3.4: Operator precedence

Operators Operator symbols Precedence

Unary

Multiply, Divide, Modulus

+ - ! ~

* / %

Highest precedence

Add, Subtract

Shift

+ -

<< >>

Relational

Equality

< <= > >=

== != === !==

Reduction

Logical

&, ~&

^, ^~

| ~|

&&

||

Conditional ?: Lowest precedence

3.8 Example

A design can be represented in terms of gates, data flow, or a behavioral description. Consider

the 4-to-1 multiplexer and 4-bit full adder described earlier. Previously, these designs were

directly translated from the logic diagram into a gate-level Verilog description. Here, we

describe the same designs in terms of data flow. We also discuss two additional examples: a

4-bit full adder using carry look ahead and a 4-bit counter using negative edge-triggered D-

flip-flops.

3.8.1 4-to-1 Multiplexer

Gate-level modeling of a 4-to-1 multiplexer, Example. The logic diagram for the multiplexer

is given in Figure 3.4 and the gate-level Verilog description is shown in Example. We describe

the multiplexer, using dataflow statements. Compare it with the gate-level description. We

show two methods to model the multiplexer by using dataflow statements.

Method 1: logic equation

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

29 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

We can use assignment statements instead of gates to model the logic equations of the

multiplexer. Notice that everything is same as the gate-level Verilog description except that

computation of out is done by specifying one logic equation by using operators instead of

individual gate instantiations. I/O ports remain the same. This important so that the

interface with the environment does not change. Only the internals of the module change.

Example 3.15: 4-to-1 Multiplexer, Using Logic Equations

// Module 4-to-1 multiplexer using data flow. logic equation

// Compare to gate-level model

module mux4_to_1 (out, i0, i1, i2, i3, s1, s0);

// Port declarations from the I/O diagram output out;

input i0, i1, i2, i3; input s1, s0;

//Logic equation for out

assign out = (~s1 & ~s0 & i0)| (~s1 & s0 & i1) | (s1 & ~s0 & i2) | (s1 & s0 & i3) ;

endmodule

Method 2: conditional operator

There is a more concise way to specify the 4-to-1 multiplexers. Conditional operators can be

used to implement 4-to-1 multiplexers.

Example3.16: 4-to-1 Multiplexer, Using Conditional Operators

// Module 4-to-1 multiplexer using data flow. Conditional operator.

// Compare to gate-level model

module multiplexer4_to_1 (out, i0, i1, i2, i3, s1, s0);

// Port declarations from the I/O diagram output out;

input i0, i1, i2, i3;

input s1, s0;

// Use nested conditional operator

assign out = s1 ? (s0 ? i3 : i2) : (s0 ? i1 : i0) ;

endmodule

In the simulation of the multiplexer, the gate-level module can be substituted with the

dataflow multiplexer modules described above. The stimulus module will not change. The

simulation results will be identical. By encapsulating functionality inside a module, we can

replace the gate-level module with a dataflow module without affecting the other modules in

the simulation. This is a very powerful feature of Verilog.

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

30 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

3.8.2: 4 bit Full Adder

The 4-bit full adder in, Examples, was designed by using gates; the logic diagram is shown

in Figure 3.7. In this section, we write the dataflow description for the 4-bit adder. In gates,

we had to first describe a 1-bit full adder. Then we built a 4-bit full ripple carry adder. We

again illustrate two methods to describe a 4-bit full adder by means of dataflow statements.

Method 1: dataflow operators

A concise description of the adder is defined with the + and { } operators.

Example 3.16: 4-bit Full Adder, Using Dataflow Operators

// Define a 4-bit full adder by using dataflow statements.

module fulladd4(sum, c_out, a, b, c_in);

// I/O port declarations output [3:0] sum;

output c_out;

input[3:0] a, b;

input c_in;

// Specify the function of a full adder

assign {c_out, sum} = a + b + c_in;

endmodule

Method 2: full adder with carry lookahead

In ripple carry adders, the carry must propagate through the gate levels before the sum is

available at the output terminals. An n-bit ripple carry adder will have 2n gate levels. The

propagation time can be a limiting factor on the speed of the circuit. One of the most popular

methods to reduce delay is to use a carry lookahead mechanism. Logic equations for

implementing the carry lookahead mechanism can be found in any logic design book. The

propagation delay is reduced to four gate levels, irrespective of the number of bits in the

adder. The Verilog description for a carry lookahead adder. This module can be substituted

in place of the full adder modules described before without changing any other component of

the simulation. The simulation results will be unchanged.

Example 3.17: 4-bit Full Adder with Carry Lookahead

module fulladd4(sum, c_out, a, b, c_in);

// Inputs and outputs

output [3:0] sum;

output c_out;

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

31 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

input [3:0] a,b;

input c_in;

// Internal wires

wire p0,g0, p1,g1, p2,g2, p3,g3; wire c4, c3, c2, c1;

// compute the p for each stage assign

p0 = a[0] ^ b[0],

p1 = a[1] ^ b[1],

p2 = a[2] ^ b[2],

p3 = a[3] ^ b[3];

// compute the g for each stage assign

g0 = a[0] & b[0],

g1 = a[1] & b[1],

g2 = a[2] & b[2],

g3 = a[3] & b[3];

// compute the carry for each stage

assign c1 = g0 | (p0 & c_in),

c2 = g1 | (p1 & g0) | (p1 & p0 & c_in),

c3 = g2 | (p2 & g1) | (p2 & p1 & g0) | (p2 & p1 & p0 & c_in),

c4 = g3 | (p3 & g2) | (p3 & p2 & g1) | (p3 & p2 & p1 & g0) | (p3 & p2 & p1 & p0 & c_in);

// Compute Sum

assign sum[0] = p0 ^ c_in, sum[1] = p1 ^ c1, sum[2] = p2 ^ c2, sum[3] = p3 ^ c3;

// Assign carry output

assign c_out = c4;

endmodule

3.8.3 Ripple Counter

 Consider the design of a 4-bit ripple counter by using negative edge-triggered flipflops. This

example was discussed at a very abstract level, Hierarchical Modeling Concepts. We design

it using Verilog dataflow statements and test it with a stimulus module. The diagrams for the

4-bit ripple carry counter modules are shown below. Figure 3.10 shows the counter being

built with four T-flipflops. Figure 3.11 shows that T flip flop is built with one D flip flop and

an inverter and figure 3.12 shows D flip flop constructed using basic gates.

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

32 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

Figure 3.10: 4-bit ripple carry counter

Figure 3.11: T- flip flop Figure 3.12: Negative edge triggered D flip flop

Given the above diagrams, we write the corresponding Verilog, using dataflow statements in

a top-down fashion. First we design the module counter. The code is shown in. The code

contains instantiation of four T_FF modules.

Example 3.18: Verilog code for ripple counter

module counter(Q , clock, clear);

// I/O ports

output [3:0] Q;

input clock, clear;

// Instantiate the T flipflops

T_FF tff0(Q[0], clock, clear);

T_FF tff1(Q[1], Q[0], clear);

T_FF tff2(Q[2], Q[1], clear);

T_FF tff3(Q[3], Q[2], clear);

endmodule

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

33 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

Example 3.19: Verilog Code for T-flipflop

// Edge-triggered T-flipflop. Toggles every clock cycle.

module T_FF(q, clk, clear);

// I/O ports

output q;

input clk, clear;

// Instantiate the edge-triggered DFF

// Complement of output q is fed back.

// Notice qbar not needed. Unconnected port.

edge_dff ff1(q, ,~q, clk, clear);

endmodule

Example 3.19: Verilog Code for Edge-Triggered D-flipflop

// Edge-triggered D flipflop

module edge_dff(q, qbar, d, clk, clear);

// Inputs and outputs

output q,qbar;

input d, clk, clear;

// Internal variables

Wire s, sbar, r, rbar, cbar;

// dataflow statements

//Create a complement of signal clear

assign cbar = ~clear;

// Input latches; A latch is level sensitive. An edge-sensitive flip-flop is implemented by using

// 3 SR latches.

assign sbar = ~(rbar & s), s = ~(sbar & cbar & ~clk), r = ~(rbar & ~clk & s), rbar = ~(r & cbar

& d);

// Output latch

assign q = ~(s & qbar), qbar = ~(q & r & cbar);

endmodule

Example 3.20: Stimulus Module for Ripple Counter

// Top level stimulus module

module stimulus;

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

34 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

// Declare variables for stimulating input

reg CLOCK, CLEAR;

wire [3:0] Q;

initial

$monitor($time, " Count Q = %b Clear= %b", Q[3:0],CLEAR);

// Instantiate the design block counter

counter c1(Q, CLOCK, CLEAR);

// Stimulate the Clear Signal

initial

begin

CLEAR = 1'b1;

#34 CLEAR = 1'b0;

#200 CLEAR = 1'b1;

#50 CLEAR = 1'b0;

end

// Set up the clock to toggle every 10 time units

initial

begin

CLOCK = 1'b0;

forever #10 CLOCK = ~CLOCK;

end

// Finish the simulation at time 400

initial

begin

#400 $finish;

end

endmodule

The output of the simulation is shown below. Note that the clear signal resets the count to

zero.

0 Count Q = 0000 Clear= 1

34 Count Q = 0000 Clear= 0

40 Count Q = 0001 Clear= 0

saleem_ece@pace.edu.in [VERILOG HDL [18EC56]]

35 Mohammed Saleem| Asst. Prof., Dept. of E & C, PACE

60 Count Q = 0010 Clear= 0

80 Count Q = 0011 Clear= 0

100 Count Q = 0100 Clear= 0

120 Count Q = 0101 Clear= 0

140 Count Q = 0110 Clear= 0

160 Count Q = 0111 Clear= 0

180 Count Q = 1000 Clear= 0

200 Count Q = 1001 Clear= 0

220 Count Q = 1010 Clear= 0

234 Count Q = 0000 Clear= 1

284 Count Q = 0000 Clear= 0

300 Count Q = 0001 Clear= 0

320 Count Q = 0010 Clear=0

340 Count Q = 0011 Clear= 0

360 Count Q = 0100 Clear= 0

380 Count Q = 0101 Clear= 0

	3.1.3 Array of Instances
	3.1.4 Examples
	4-bit Ripple Carry Full Adder
	Fall delay
	Turn-off delay

	Min/Typ/Max Values
	3.2.3 Delay Example
	Example 3.13: Stimulus for Module D with Delay
	3.14.3 Implicit Net Declaration

